BackgroundDespite the success of indoor residual insecticide spraying (IRS) in Africa, particularly in Benin, some gaps of information need to be filled to optimize the effectiveness of this intervention in the perspective of the country’s effort to eliminate malaria. In anticipation to the 2018 IRS campaign in two targeted regions of northern Benin, this study aimed, to collect baseline information on vector composition, spatio-temporal variation and peak malaria transmission in the Alibori and Donga, two targeted regions of northern Benin. Information collected will help to better plan the implementation and later on the impact assessment of this IRS campaign.MethodsThe study was carried out in four districts of the two IRS targeted regions of northern Benin. Human landing catches and pyrethrum spray catches protocols were used to assess the biting rate (HBR) and, biting/resting behaviour of malaria vector populations. After morphological identification of collected Anopheles, the heads and thoraxes of Anopheles gambiae sensu lato (s.l.) were analysed by the ELISA CSP tests to estimate the sporozoite index (SI). The entomological inoculation rate was calculated as the product of mosquito biting rate (HBR) and the SI.ResultsThe biting rates of An. gambiae s.l., the major vector in this study sites, varied significantly from region to region. It was higher: in rural than in urban areas, in rainy season than in dry season, indoors than outdoors. Overall, SI was comparable between sites. The highest EIRs were observed in the Donga region (16.84 infectious bites/man/month in Djougou district and 17.64 infectious bites/man/month in Copargo district) and the lowest in the Alibori region (10.74 infectious bites/man/month at Kandi district and 11.04 infectious bites/man/month at Gogounou district).ConclusionThis study showed the heterogeneous and various nature of malaria epidemiology in Northern Benin. Indeed, the epidemiological profile of malaria transmission in the Alibori and Donga regions is made of a single season of transmission interrupted by a dry season. This period of transmission is relatively longer in Donga region than in Alibori. This information can be used to guide the extension of IRS in the Alibori and in the Donga, by primarily targeting areas with short periods of transmission, and easy to cover.
BackgroundThis study aims to provide baseline data on the resistance status to insecticides, the frequency of mechanisms involved and the impact of the association with the synergist piperonyl butoxide (PBO) on resistant Anopheles gambiae (s.l.) populations in two regions of northern Benin, prior to an indoor residual spraying campaign and introduction of next generation long-lasting insecticidal nets (LLINs) incorporating PBO.MethodsAdult Anopheles gambiae (s.l.) originating from larvae collected in two study regions (Alibori within the Kandi-Gogounou-Segbana districts and Donga within the Djougou-Copargo-Ouake districts) were tested with impregnated papers (bendiocarb 0.1%, pirimiphos-methyl 0.25%, permethrin 0.75% and deltamethrin 0.05%). The synergist PBO was used to check for the involvement of detoxification enzymes in pyrethroid resistant populations. Molecular analyses were performed for the identification of species within the Anopheles gambiae (s.l.) complex and kdr L1014F and G119S Ace-1 mutations. Biochemical assays assessed the activity of detoxification enzymes.ResultsAnopheles gambiae (s.l.) was resistant to pyrethroids, with a mortality range of 25–83% with deltamethrin and 6–55% with permethrin. A significant increase in mortality was observed after pre-exposure to PBO for both deltamethrin (63–99%) and permethrin (56–99%). With bendiocarb, An. gambiae (s.l.) were susceptible in Kandi (99% mortality), with possible resistance (92–95%) recorded in Djougou, Copargo, Gogounou, Ouake and Segbana. All study populations were fully susceptible to pirimiphos-methyl. The frequencies of resistant mutations varied according to species and sites: 0.67–0.88 for L1014F kdr and 0–0.06 for G119S Ace-1. Three study locations (Djougou, Gogounou and Kandi) showed high oxidase activity and four sites (Djougou, Ouake, Copargo and Kandi) showed elevated esterase activity.ConclusionsThis study confirms resistance to pyrethroids and suggests emerging bendiocarb resistance in An. gambiae (s.l.) populations in northern Benin. However, recovery of susceptibility to pyrethroids after PBO exposure, and susceptibility to organophosphates in the An. gambiae (s.l.) populations indicate that next generation LLINs incorporating PBO synergist combined with an indoor residual spraying (IRS) campaign with organophosphate insecticides may be regarded as alternative control tools.
Background: Long-lasting insecticidal nets (LLINs) are designed to survive and sustain their physical barrier for 3 years in household conditions. However, studies have shown that most of these nets are usually torn or no longer present in the households in less than 3 years. This study was initiated in Benin to compare the survivorship and physical integrity of seven types of LLINs in a same socio-geographic area. Methods: In August 2017, 1890 households were selected in 9 villages in the municipality of Zagnanado in central Benin. Each one of the selected households received one of the seven LLIN products: Aspirational ® , DawaPlus ® 2.0, OlysetNet ® , PermaNet ® 2.0, PermaNet ® 3.0, Royal Sentry ® and Yorkool ®. Overall, 270 LLINs of each type were freely distributed in Zagnanado, at a rate of 30 LLINs per type per village. These bed nets have been monitored and evaluated every 6 months to identify the most resilient and preferred LLINs in the community. Net survivorship was assessed using the rate of net loss and physical condition. Results: The survivorship of all types of LLIN was estimated at 92% (95% CI 90.33-92.96) after 6 months and 70% (95% CI 67.25-71.81) after a year of use. At 12 months, all bed nets monitored were below the NetCalc model threshold of 92.8% for an LLIN with a lifespan of 3 years. Only 1.73% of all types of LLIN had a visible loss of integrity after 6 months with a median proportionate hole index (PHI) estimated at zero. The percentage significantly increased after 12 months with 10.41% of damaged nets (all types of LLINs). The median PHI for each brand of net was 23, 196, 141, 23, 23, 121 and 72, respectively for Aspirational ® , DawaPlus ® 2.0, OlysetNet ® , PermaNet ® 2.0, PermaNet ® 3.0, Royal Sentry ® and Yorkool ®. A significant difference was noted between the PHI at 6 and 12 months (p < 0.0001). After 12 months, the DawaPlus ® 2.0, OlysetNet ® and Royal Sentry ® suffered significantly more damage compared to the others (p < 0.001). Conclusion: The results of this study showed that after a year of use, the survivorship of the 7 LLIN products in households was lower than expected. However, all the LLIN products successfully met WHO standards for physical integrity after 12 months of use. The monitoring continues. The next steps will help to identify the most sustainable LLINs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.