In this paper, an automatic Computer Aided Diagnosis (CAD) system is completely designed for breast cancer diagnosis and it is verified on a publicly available mammogram dataset constructed during Image Retrieval in Medical Applications (IRMA) project. This database comprises three different patch types indicating the health status of a person. These types are normal, benign cancer, and malignant cancer and they are labeled by the radiologists for the IRMA project. In the realization of CAD system, all mammogram patches are firstly preprocessed performing a histogram equalization followed by Non-Local Means (NLM) filtering. Then, the Local Configuration Pattern (LCP) algorithm is performed for feature extraction. Besides, some statistical and frequencydomain features are concatenated to LCP-based feature vectors. The obtained new feature ensemble is used with four well-known classifiers which are Fisher's Linear Discriminant Analysis (FLDA), Support Vector Machines (SVM), Decision Tree, and k-Nearest Neighbors (k-NN). A maximum of 94.67% recognition accuracy is attained utilizing the new feature ensemble whereas 90.60% was found if only LCP-based feature vectors are used. This consequence obviously reveals that the new feature ensemble is more representative than an LCP-based feature vector by itself.
A new and effective feature ensemble with a multistage classification is proposed to be implemented in a computer-aided diagnosis (CAD) system for breast cancer diagnosis. A publicly available mammogram image dataset collected during the Image Retrieval in Medical Applications (IRMA) project is utilized to verify the suggested feature ensemble and multistage classification. In achieving the CAD system, feature extraction is performed on the mammogram region of interest (ROI) images which are preprocessed by applying a histogram equalization followed by a nonlocal means filtering. The proposed feature ensemble is formed by concatenating the local configuration pattern-based, statistical, and frequency domain features. The classification process of these features is implemented in three cases: a one-stage study, a two-stage study, and a three-stage study. Eight well-known classifiers are used in all cases of this multistage classification scheme. Additionally, the results of the classifiers that provide the top three performances are combined via a majority voting technique to improve the recognition accuracy on both two- and three-stage studies. A maximum of 85.47%, 88.79%, and 93.52% classification accuracies are attained by the one-, two-, and three-stage studies, respectively. The proposed multistage classification scheme is more effective than the single-stage classification for breast cancer diagnosis.
A breast tissue type detection system is designed, and verified on a publicly available mammogram dataset constructed by the Mammographic Image Analysis Society (MIAS) in this paper. This database consists of three fundamental breast tissue types that are fatty, fatty-glandular, and dense-glandular. At the pre-processing stage of the designed detection system, median filtering and morphological operations are applied for noise reduction and artifact suppression, respectively; then a pectoral muscle removal operation follows by using a region growing algorithm. Then, 88-dimensional texture features are computed from the GLCMs (Gray-Level CoOccurrence Matrices) of mammogram images. Besides, a formerly introduced 108-dimensional feature ensemble is also computed and cascaded with the 88-dimensional texture features. Finally, a classification process is realized using Fisher's Linear Discriminant Analysis (FLDA) classifier in four different classification cases: one-stage classification, first fatty -then others, first fatty-glandularthen others, and first dense-glandular -then others. A maximum of 72.93% classification accuracy is achieved using only texture features whereas it is increased to 82.48% when cascade features are utilized. This consequence clearly exposes that the cascade features are more representative than texture features. The maximum classification accuracy is attained when "first fatty-glandular -then others" classification case is implemented, that is consistent with the fact that fatty-glandular tissue type is easily confused with fatty and denseglandular tissue types.
STLF is used in making decisions about economical power generation capacity, fuel purchasing, safety assessment, and power system planning in order to have economical power conditions. In this study, Turkey's 24-hourahead load forecasting without meteorological data is studied. ANN, wavelet transform and ANN, wavelet transform and RBF NN, and EMD and RBF NN structures are used in STLF procedures. Local holidays' historical load data are changed into data with normal day characteristics, and the estimation results of these days are not included in error computation. To obtain more accurate results, a regulation on forecasted loads is proposed. Regulated and unregulated forecasting error percentages are computed as daily average MAPE and maximum daily MAPE, and compared between the proposed structures. A simulation is performed for the years 2009-2010 via the user interface created using MATLAB GUI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.