Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning Generative Adversarial Networks (GANs). Furthermore, we show that generated medical images can be used for synthetic data augmentation, and improve the performance of CNN for medical image classification. Our novel method is demonstrated on a limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). We first exploit GAN architectures for synthesizing high quality liver lesion ROIs. Then we present a novel scheme for liver lesion classification using CNN. Finally, we train the CNN using classic data augmentation and our synthetic data augmentation and compare performance. In addition, we explore the quality of our synthesized examples using visualization and expert assessment. The classification performance using only classic data augmentation yielded 78.6% sensitivity and 88.4% specificity. By adding the synthetic data augmentation the results increased to 85.7% sensitivity and 92.4% specificity. We believe that this approach to synthetic data augmentation can generalize to other medical classification applications and thus support radiologists' efforts to improve diagnosis.
In this work, we examine the strength of deep learning approaches for pathology detection in chest radiographs. Convolutional neural networks (CNN) deep architecture classification approaches have gained popularity due to their ability to learn mid and high level image representations. We explore the ability of CNN learned from a non-medical dataset to identify different types of pathologies in chest x-rays. We tested our algorithm on a 433 image dataset. The best performance was achieved using CNN and GIST features. We obtained an area under curve (AUC) of 0.87-0.94 for the different pathologies. The results demonstrate the feasibility of detecting pathology in chest x-rays using deep learning approaches based on non-medical learning. This is a first-of-its-kind experiment that shows that Deep learning with ImageNet, a large scale non-medical image database may be a good substitute to domain specific representations, which are yet to be available, for general medical image recognition tasks.
In this work, we examine the strength of deep learning approaches for pathology detection in chest radiograph data. Convolutional neural networks (CNN) deep architecture classification approaches have gained popularity due to their ability to learn mid and high level image representations. We explore the ability of a CNN to identify different types of pathologies in chest x-ray images. Moreover, since very large training sets are generally not available in the medical domain, we explore the feasibility of using a deep learning approach based on non-medical learning. We tested our algorithm on a dataset of 93 images. We use a CNN that was trained with ImageNet, a well-known large scale nonmedical image database. The best performance was achieved using a combination of features extracted from the CNN and a set of low-level features. We obtained an area under curve (AUC) of 0.93 for Right Pleural Effusion detection, 0.89 for Enlarged heart detection and 0.79 for classification between healthy and abnormal chest x-ray, where all pathologies are combined into one large class. This is a first-of-its-kind experiment that shows that deep learning with large scale non-medical image databases may be sufficient for general medical image recognition tasks.
The bag-of-visual-words (BoVW) method with construction of a single dictionary of visual words has been used previously for a variety of classification tasks in medical imaging, including the diagnosis of liver lesions. In this paper, we describe a novel method for automated diagnosis of liver lesions in portal-phase computed tomography (CT) images that improves over single-dictionary BoVW methods by using an image patch representation of the interior and boundary regions of the lesions. Our approach captures characteristics of the lesion margin and of the lesion interior by creating two separate dictionaries for the margin and the interior regions of lesions (“dual dictionaries” of visual words). Based on these dictionaries, visual word histograms are generated for each region of interest (ROI) within the lesion and its margin. For validation of our approach, we used two datasets from two different institutions, containing CT images of 194 liver lesions (61 cysts, 80 metastasis and 53 hemangiomas). The final diagnosis of each lesion was established by radiologists. The classification accuracy for the images from the two institutions was 99% and 88%, respectively, and 93% for a combined dataset. Our new BoVW approach that uses dual dictionaries shows promising results. We believe the benefits of our approach may generalize to other application domains within radiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.