Acinar metaplasia is an initial step in a series of events that can lead to pancreatic cancer. Here we perform single-cell RNA-sequencing of mouse pancreas during the progression from preinvasive stages to tumor formation. Using a reporter gene, we identify metaplastic cells that originated from acinar cells and express two transcription factors, Onecut2 and Foxq1. Further analyses of metaplastic acinar cell heterogeneity define six acinar metaplastic cell types and states, including stomach-specific cell types. Localization of metaplastic cell types and mixture of different metaplastic cell types in the same pre-malignant lesion is shown. Finally, single-cell transcriptome analyses of tumor-associated stromal, immune, endothelial and fibroblast cells identify signals that may support tumor development, as well as the recruitment and education of immune cells. Our findings are consistent with the early, premalignant formation of an immunosuppressive environment mediated by interactions between acinar metaplastic cells and other cells in the microenvironment.
Summary
The p53 gene is mutated in many human tumors. Cells of such tumors often contain abundant mutant p53 (mutp53) protein, which may contribute actively to tumor progression via a gain of function (GOF) mechanism. We applied ChIP-on-chip analysis and identified the VDR (vitamin D receptor) response element as over-represented in promoter sequences bound by mutp53. We report that mutp53 can interact functionally and physically with VDR. Mutp53 is recruited to VDR-regulated genes and modulates their expression, augmenting the transactivation of some genes and relieving the repression of others. Furthermore, mutp53 increases the nuclear accumulation of VDR. Importantly, mutp53 converts vitamin D into an antiapoptotic agent. Thus, p53 status can determine the biological impact of vitamin D on tumor cells.
SUMMARY
DNA binding by numerous transcription factors including the p53 tumor suppressor protein constitutes a vital early step in transcriptional activation. While the role of the central core DNA binding domain (DBD) of p53 in site-specific DNA binding has been established, the contribution of the sequence-independent C-terminal domain (CTD) is still not well understood. We investigated the DNA-binding properties of a series of p53 CTD variants using a combination of in vitro biochemical analyses and in vivo binding experiments. Our results provide several unanticipated and interconnected findings. First, the CTD enables DNA binding in a sequence-dependent manner that is drastically altered by either its modification or deletion. Second, dependence on the CTD correlates with the extent to which the p53 binding site deviates from the canonical consensus sequence. Finally, the CTD enables stable formation of p53-DNA complexes to divergent binding sites via DNA-induced conformational changes within the DBD itself.
The p53 tumor suppressor protein is a transcription factor that plays a key role in the cellular response to stress and cancer prevention. Upon activation, p53 regulates a large variety of genes causing cell cycle arrest, apoptosis, or senescence. We have developed a p53-focused array, which allows us to investigate, simultaneously, p53 interactions with most of its known target sequences using the chromatin immunoprecipitation (ChIP)-on-chip methodology. Applying this technique to multiple cell types under various growth conditions revealed a profound difference in p53 activity between primary cells and established cell lines. We found that, in peripheral blood mononuclear cells, p53 exists in a form that binds only a small subset of its target regions. Upon exposure to genotoxic stress, the extent of targets bound by p53 significantly increased. By contrast, in established cell lines, p53 binds to essentially all of its targets irrespective of stress and cellular fate (apoptosis or arrest). Analysis of gene expression in these established lines revealed little correlation between DNA binding and the induction of gene expression. Our results suggest that nonactivated p53 has limited binding activity, whereas upon activation it binds to essentially all its targets. Additional triggers are most likely required to activate the transcriptional program of p53. [Cancer Res 2008;68(23):9671-7]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.