The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the Journal of AIED (1994, 2004, and 2014) to identify the foci and typical scenarios that occupy the field of AIED. We use those results to suggest two parallel strands of research that need to take place in order to impact education in the next 25 years: One is an evolutionary process, focusing on current classroom practices, collaborating with teachers, and diversifying technologies and domains. The other is a revolutionary process where we argue for embedding our technologies within students' everyday lives, supporting their cultures, practices, goals, and communities. Keywords Artificial intelligence in education. Intelligent tutoring systems. Interactive learning environments. Education revolution "If I had asked people what they wanted, they would have said faster horses."-Henry Ford For much of the last 25 years, the Artificial Intelligence in Education (AIED) community has been focusing, to a large degree, on solving the two-sigma problem by creating systems that are as effective as human one-on-one tutoring (VanLehn, 2011). Over the years, we have made many significant advances towards that goal. To
It has been found in recent years that many students who use intelligent tutoring systems game the system, attempting to succeed in the educational environment by exploiting properties of the system rather than by learning the material and trying to use that knowledge to answer correctly. In this paper, we introduce a system which gives a gaming student supplementary exercises focused on exactly the material the student bypassed by gaming, and which also expresses negative emotion to gaming students through an animated agent. Students using this system engage in less gaming, and students who receive many supplemental exercises have considerably better learning than is associated with gaming in the control condition or prior studies.
Some students, when working in interactive learning environments, attempt to "game the system", attempting to succeed in the environment by exploiting properties of the system rather than by learning the material and trying to use that knowledge to answer correctly. In this paper, we present a system that can accurately detect whether a student is gaming the system, within a Cognitive Tutor mathematics curricula. Our detector also distinguishes between two distinct types of gaming which are associated with different learning outcomes. We explore this detector's generalizability, and find that it transfers successfully to both new students and new tutor lessons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.