Bearing spall detection and predicting its size are great challenges. Model-based simulation is a well-known traditional approach to physically model the influence of the spall on the bearing. Building a physical model is challenging due to the bearing complexity and the expert knowledge required to build such a model. Obviously, building a partial physical model for some of the spall sizes is easier. In this paper, we propose a machine-learning algorithm, called Probability-Based Forest, that uses a partial physical model. First, the behavior of some of the spall sizes is physically modeled and a simulator based on this model generates scenarios for these spall sizes in different conditions. Then, the machine-learning algorithm trains these scenarios to generate a prediction model of spall sizes even for those that have not been modeled by the physical model. Feature extraction is a key factor in the success of this approach. We extract features using two traditional approaches: statistical and physical, and an additional new approach: Time Series FeatuRe Extraction based on Scalable Hypothesis tests (TSFRESH). Experimental evaluation with well-known physical model shows that our approach achieves high accuracy, even in cases that have not been modeled by the physical model. Also, we show that the TSFRESH feature-extraction approach achieves the highest accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.