The conversion of waste obtained from agricultural processes into biocompatible materials (biomaterials) used in medical surgery is a strategy that will add more value in waste utilization. This strategy has successfully turned the rather untransformed wastes into high value products. Eggshell is an agricultural waste largely considered as useless and is discarded mostly because it contributes to pollution. This waste has potential for producing hydroxyapatite, a major component found in bone and teeth. Hydroxyapatite is an excellent material used in bone repair and tissue regeneration. The use of eggshell to generate hydroxyapatite will reduce the pollution effect of the waste and the subsequent conversion of the waste into a highly valuable product. In this paper, we reviewed the utilization of this agricultural waste (eggshell) in producing hydroxyapatite. The process of transforming eggshell into hydroxyapatite and nanohydroxyapatite is an environmentally friendly process. Eggshell based hydroxyapatite and nanohydroxyapatite stand as good chance of reducing the cost of treatment in bone repair or replacement with little impact on the environment.
In marine environments where biofouling occurs and has an impact on the maritime economy and environment, compounds that inhibit the attachment, growth and survival of microorganisms in a biofilm complex as well as settlement of larvae are considered potential antifouling compounds. In this study, the extracellular metabolites from two surface- associated bacteria isolated from soft coral and macroalga were evaluated for antibiofilm and antisettlement activity. The bacteria were identified using 16S rRNA gene sequencing, and the culture supernatant extract of each strain was evaluated for antibiofilm activity. The compounds present in the extracts were analysed using GC-MS. The two bacterial strains were identified as Bacillus licheniformis MBR1 and Vibrio alginolyticus MBR4 for the isolates from soft coral and macroalgae, respectively. The extracts inhibited the growth of biofilm-forming bacteria, biofilm formation and barnacle larval settlement. The GC-MS analysis of the extract detected the presence of compounds such as tetrapentacontane, octadecanoic acid, 2,3-dihydroxypropyl ester, hexadecanoic acid, 2-hydroxy1-(hydroxymethyl) ethyl ester and 17-pentatriacontene. The results of the study show that extracellular metabolites of the bacteria associated with marine organisms could be used as natural antifouling compounds to control biofouling.
Biofilm bacteria are primary surface colonizers in marine biofouling assemblage on submerged surfaces and dominate the early microfouling phase. They are an important target in the design of antifouling treatment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.