The impact process of droplets falling obliquely on thin flowing films is studied using a high-speed imaging system with a focus on splashing. Frequency-forcing of the flow rate at the inlet is applied in order to form solitary waves prior to droplet impact. The outcomes associated with impact on targeted regions of the waves are examined; these include the capillary wave region preceding the large wave peak, the flat film region, and the wave hump region. The effect of varying the film flow rate, droplet size, and speed on the splashing regime for each of these regions is elucidated. The results are further compared with those associated with uncontrolled flowing films, and with quiescent films. The present work has demonstrated, for the first time, the contribution made by the spatial structure of waves to the outcome of droplet impact on flowing films.
The interaction patterns between doubly excited pulse waves on thin liquid films flowing down an inclined plane are studied both experimentally and numerically. The effect of varying the film flow rate, interpulse interval, and substrate inclination angle on the pulse interaction patterns is examined. Our results show that different interaction patterns exist for these binary pulses, which include solitary wave behavior, partial or complete pulse coalescence, and pulse noncoalescence. A regime map of these patterns is plotted for each inclination angle examined, parametrized by the film Reynolds number and interpulse interval. Finally, the individual effect of the system parameters mentioned above on the coalescence distance of binary pulses in the "complete pulse coalescence" mode is studied; the results are compared to numerical simulations of the two-dimensional Navier-Stokes equations yielding good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.