Landslides are geological hazards that claim lives and affect socio-economic growth. Despite increased slope failure, some constructions, such as road constructions, are still being performed without proper investigation of the susceptibility of slope mass movement. This study researches the susceptibility of landslides in a study area encompassing a major highway that extends from Taiping to Ipoh, Malaysia. After a comprehensive literature review, 10 landslide conditioning factors were considered for this study. As novel research in this study area, multi-criteria decision-making (MCDM) models such as AHP and fuzzy AHP were used to rank the conditioning factors before generating the final landslide susceptibility mapping using Geographical Information System (GIS) software. The landslide susceptibility map has five classes ranging from very low (9.20%) and (32.97%), low (18.09%) and (25.60%), moderate (24.46%) and (21.36%), high (27.57%) and (13.26%), to very high (20.68%) and (6.81%) susceptibility for the FAHP and AHP models, respectively. It was recorded that the area is mainly covered with moderate to very high landslide risk, which requires proper intervention, especially for subsequent construction or renovation processes. The highway was overlayed on the susceptibility map, which concludes that the highway was constructed on a terrain susceptible to slope instability. Therefore, decision-makers should consider further investigation and landslide susceptibility mapping before construction.
Abstract. The overall tectonics of a terrain and landslide occurrences can be controlled using lineament analysis. In addition, understanding the deformational characteristics of the rocks in question cannot be overemphasized. The current work was carried out along Taiping to Ipoh stretch of the North – South PLUS Highway Malaysia and its environs to assess landslide vulnerability via lineaments and strain deformation analysis. Approximately 73 km stretch of the road was analysed. Classification of about 197 lineaments was done from very high to very low density classes applying class break procedures to signify their respective risk zones. Fry strain analysis method was then integrated by digitizing the centre of the grains from which reference lines angles and axial ratios of 16 photomicrographs of various lithologies obtained from field investigations were used to understand their strain deformational pattern. The lineament intersection point map shows its concordance with the strain ellipsoid. The major trend of the lineaments and fry strain ellipsoid were both found to be trending NE–SW. Congruity between the lineaments intersection density and the flattened higher degree of strain signified a risk prone zone and probable landslide trigger along the highway.
Abstract. Flooding is one of the most prevalent natural disasters affecting people worldwide. Flooding is a devastating natural disaster in Malaysia regarding the number of people affected, socioeconomic damage, severity, and scale of the impact. Urban flooding is currently a major concern due to the possible consequences and frequency with which it occurs in urban areas as urbanization and population increase. Due to the paved surfaces, paved roads, high population, and buildings that prevent water infiltration and movement to the nearby river, urban floods pose a significant threat to the sustainability of lives and properties in the city. The recent floods in Kuala Lumpur in December 2021 and January 2022 affected many buildings, infrastructure, and lives. As a result, this city needs to model the susceptibility of flood-prone areas for an early warning system against future flood hazards in Kuala Lumpur. This is because flooding can never be eradicated but can be minimized and managed. Therefore, this study integrates geospatial technology and a statistical model (logistic regression) to assess flood hazards in Kuala Lumpur. Ten flood conditioning factors such as altitude, slope, TWI, drainage density, distance to river, LULC, NDVI, NDWI, rainfall and MNDWI were used to predict the areas susceptible to flood. The prediction shows an overall accuracy of 0.84, precision of 0.91, recall of 0.72, and F1-score of 0.80. Distance to river, MNDWI, TWI, and LULC are the critical variables that showed high significance in the model prediction. Thus, stakeholders should prioritize urban planning and increase the drainage system to avoid flood effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.