Most existing DHT algorithms assume that all nodes have equal capabilities. This assumption has previously been shown to be untrue in real deployments, where the heterogeneity of nodes can actually have a detrimental effect upon performance. In this paper, we acknowledge that nodes on the same overlay may also differ in terms of their trustworthiness. However, implementing and enforcing security policies in a network where all nodes are treated equally is a non-trivial task. We therefore extend our previous work on Stealth DHTs to consider the differentiation of nodes based on their trustworthiness rather than their capabilities alone.
This paper concentrates on obtaining uniform weighted round robin schedules for input queued packet switches. The desired schedules are uniform in the sense that each connection is serviced at regularly spaced time slots, where the spacing is proportional to the inverse of the guaranteed data rate. Suitable applications include ATM networks as well as satellite switched TDMA systems that provide per packet delay guarantees. Three heuristic algorithms are proposed to obtain such schedules under the constraints imposed by the unit speedup of input queued switches. Numerical experiments indicate that the algorithms have remarkable performance in finding uniform schedules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.