Machine learning (ML) methods are widely proposed for security monitoring of Internet of Things (IoT). However, these methods can be computationally expensive for resource constraint IoT devices. This paper proposes an optimized resource efficient ML method that can detect various attacks on IoT devices. It utilizes Light Gradient Boosting Machine (LGBM). The performance of this approach was evaluated against four realistic IoT benchmark datasets. Experimental results show that the proposed method can effectively detect attacks on IoT devices with limited resources, and outperforms the state of the art techniques.
Federated Learning (FL) uses a distributed Machine Learning (ML) concept to build a global model using multiple local models trained on distributed edge devices. A disadvantage of the FL paradigm is the requirement of many communication rounds before model convergence. As a result, there is a challenge for running on-device FL with resourcehungry algorithms such as Deep Neural Network (DNN), especially in the resource-constrained Internet of Things (IoT) environments for security monitoring. To address this issue, this paper proposes Resource Efficient Federated Deep Learning (REFDL) method. Our method exploits and optimizes Federated Averaging (Fed-Avg) DNN based technique to reduce computational resources consumption for IoT security monitoring. It utilizes pruning and simulated micro-batching in optimizing the Fed-Avg DNN for effective and efficient IoT attacks detection at distributed edge nodes. The performance was evaluated using various realistic IoT and non-IoT benchmark datasets on virtual and testbed environments build with GB-BXBT-2807 edge-computing-like devices. The experimental results show that the proposed method can reduce memory usage by 81% in the simulated environment of virtual workers compared to its benchmark counterpart. In the realistic testbed scenario, it saves 6% memory while reducing execution time by 15% without degrading accuracy.
Using Machine Learning (ML) for Internet of Things (IoT) security monitoring is a challenge. This is due to their resource constraint nature that limits the deployment of resource-hungry monitoring algorithms. Therefore, the aim of this paper is to investigate resource consumption reduction of ML algorithms in IoT security monitoring. This paper starts with an empirical analysis of resource consumption of Artificial Immune System (AIS) algorithm, and then employs carefully selected feature reduction techniques to reduce the computational cost of running the algorithm. The proposed approach significantly reduces computational cost as illustrated in the paper. We validate our results using two benchmarks and one purposefully simulated data set. 2 RELATED WORK There are various works in the field of IoT from the perspectives of security, architecture, deployment op
network for intrusion detection in IoT networks. In CPPS '22: proceedings of the 8th ACM (Association for Computing Machinery) Cyber-physical system security workshop 2022 (CPSS '22), co-located with the 17th ACM (Association for Computing Machinery) Asia conference on computer and communications security 2022 (ASIACCS '22) Nagasaki, Japan (virtual event
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.