This equation generalizes the functional equation for spherical functions on a Gel'fand pair. We seek solutions φ in the space of continuous and bounded functions on G. If π is a continuous unitary representation of G such that π( µ) is of rank one, then tr(π( µ) π(x)) is a solution of ( µ). (Here, tr means trace). We give some conditions under which all solutions are of that form. We show that ( µ) has (bounded and) integrable solutions if and only if G admits integrable, irreducible and continuous unitary representations. We solve completely the problem when G is compact. This paper contains also a list of results dealing with general aspects of ( µ) and properties of its solutions. We treat examples and give some applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.