We prove that Mal'tsev and Goursat categories may be characterized through variations of the Shifting Lemma, that is classically expressed in terms of three congruences R, S and T , and characterizes congruence modular varieties. We first show that a regular category C is a Mal'tsev category if and only if the Shifting Lemma holds for reflexive relations on the same object in C. Moreover, we prove that a regular category C is a Goursat category if and only if the Shifting Lemma holds for a reflexive relation S and reflexive and positive relations R and T in C. In particular this provides a new characterization of 2-permutable and 3-permutable varieties and quasi-varieties of universal algebras.
We prove that connectors are stable under quotients in any (regular) Goursat category. As a consequence, the category Conn(C) of connectors in C is a Goursat category whenever C is. This implies that Goursat categories can be characterised in terms of a simple property of internal groupoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.