Logistic regression model is widely used in many studies to investigate the relationship between a binary response variable Y and a set of potential predictors X. The binary response may represent, for example, the occurrence of some outcome of interest (Y=1 if the outcome occurred and Y=0 otherwise). When the dependent variable Y represents a rare event, the logistic regression model shows relevant drawbacks. In order to overcome these drawbacks we propose the Generalized Extreme Value (GEV) regression model. In particularly, we suggest the quantile function of the GEV distribution as link function. Strokes are a serious pathology and a neurological emergency involving the vital prognosis and the functional prognosis. In Senegal, strokes account for more than 30% of hospitalizations and are responsible for nearly two thirds of mortality. In this work, we use the GVE regression model for binary data to determine the risk factors leading to stroke and to develop a predictive model of life-threatening outcomes in central Sénégal.
Logistic regression model is widely used in many studies to investigate the relationship between a binary response variable Y and a set of potential predictors X. The binary response may represent, for example, the occurrence of some outcome of interest (Y=1 if the outcome occurred and Y=0 otherwise). When the dependent variable Y represents a rare event, the logistic regression model shows relevant drawbacks. In order to overcome these drawbacks we propose the Generalized Extreme Value (GEV) regression model. In particularly, we suggest the quantile function of the GEV distribution as link function. Strokes are a serious pathology and a neurological emergency involving the vital prognosis and the functional prognosis. In Senegal, strokes account for more than 30% of hospitalizations and are responsible for nearly two thirds of mortality. In this work, we use the GVE regression model for binary data to determine the risk factors leading to stroke and to develop a predictive model of life-threatening outcomes in central Sénégal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.