The mango crop suffers from several diseases that reduce both the production and the quality of the mangoes. This also reduces its price on the international market. Diagnosis of these diseases remains difficult in many countries due to poverty and lack of infrastructure. Plant pathologists use several techniques to identify these diseases. But these techniques are time consuming and relatively expensive for mango growers and the solutions proposed are often not very accurate and sometimes biased. In the last decade, researchers have proposed several solutions in the field of automatic diagnosis of mango diseases. Such solutions are based on Machine Learning (ML) and Deep Learning (DL) algorithms. In this paper, we divided these solutions into two groups: solutions based on classical ML algorithms, and those based on DL. In recent years, DL, especially Convolutional Neural Network (CNN) has become the most widely used method by researchers because of its impressive performance. The critical analysis of the proposed solutions has allowed us to identify their limits and potential challenges in mango disease automatic diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.