Embryonic development of multilineage hematopoiesis requires the precisely regulated expression of lineage-specific transcription factors, including AML-1 (encoded by Runx1; also known as CBFA-2 or PEBP-2alphaB). In vitro studies and findings in human diseases, including leukemias, myelodysplastic syndromes and familial platelet disorder with predisposition to acute myeloid leukemia (AML), suggest that AML-1 has a pivotal role in adult hematopoiesis. However, this role has not been fully uncovered in vivo because of the embryonic lethality of Runx1 knockout in mice. Here we assess the requirement of AML-1/Runx1 in adult hematopoiesis using an inducible gene-targeting method. In the absence of AML-1, hematopoietic progenitors were fully maintained with normal myeloid cell development. However, AML-1-deficient bone marrow showed inhibition of megakaryocytic maturation, increased hematopoietic progenitor cells and defective T- and B-lymphocyte development. AML-1 is thus required for maturation of megakaryocytes and differentiation of T and B cells, but not for maintenance of hematopoietic stem cells (HSCs) in adult hematopoiesis.
These results provide new insight into the cardioprotective action of estrogen as well as a paradigm of the response-to-injury hypothesis.
SUMMARY:Acute experimental iron loading causes iron to accumulate in the renal tissue. The accumulation of iron may play a role in enhancing oxidant-induced tubular injury by producing increased amounts of reactive oxygen species. From findings in cells from heme oxygenase-1 (HO-1)-deficient mice, HO-1 is postulated to prevent abnormal intracellular iron accumulation. Recently, it has been reported that HO-1 is induced in the renal tubular epithelial cells, in which iron is deposited after iron loading, and that this HO-1 induction may be involved in ameliorating iron-induced renal toxicity. We previously showed that chronic administration of angiotensin II to rats induces HO-1 expression in the tubular epithelial cells. These observations led us to investigate whether there is a link between iron deposition and HO-1 induction in renal tubular cells in rats undergoing angiotensin II infusion. In the present study, rats were given angiotensin II for continuously 7 days. Prussian blue staining revealed the distinct deposits of iron in the proximal tubular epithelial cells after angiotensin II administration. Electron microscopy demonstrated that iron particles were present in the lysosomes of these cells. Histologic and immunohistochemical analyses showed that stainable iron and immunoreactive ferritin and HO-1 were colocalized in the tubular epithelial cells. Treatment of angiotensin II-infused rats with an iron chelator, deferoxamine, blocked the abnormal iron deposition in kidneys and also the induced expression of HO-1 and ferritin expression. Furthermore, deferoxamine treatment suppressed the angiotensin II-induced increase in the urinary excretion of protein and N-acetyl--D-glucosaminidase, a marker of tubular injury; however, deferoxamine did not affect the angiotensin II-induced decrease in glomerular filtration rate. These results suggest that angiotensin II causes renal injury, in part, by inducing the deposition of iron in the kidney. (Lab Invest 2002, 82:87-96).
Background-Abnormal iron deposition may cause oxidant-induced damage in various organs. We have previously reported that continuous administration of angiotensin II to rats results in an overt iron deposition in the renal tubular epithelial cells, which may have a role in angiotensin II-induced renal damage. In the present study, we investigated the role of iron in the development of cardiac injury induced by angiotensin II. Methods and Results-Angiotensin II was continuously infused to rats at a dose of 0.7 mg/kg per day for 7 consecutive days. No iron deposits were observed in the hearts of untreated rats, whereas iron deposition was seen in the cells in the subepicardial and granulation regions after angiotensin II infusion. Concomitant administration of deferoxamine, an iron chelator, significantly reduced the extent of cardiac fibrosis, which suggests that iron deposition aggravates the cardiac fibrosis induced by angiotensin II. Iron overload caused by the administration of iron-dextran resulted in an augmentation of cardiac fibrosis and the generation of neointimal cells in the coronary artery in angiotensin II-infused rats. By contrast, neointima was not formed in the cardiac vessels in norepinephrine-infused rats with iron overload. Conclusions-Cardiac iron deposition may be involved in the development of cardiac fibrosis induced by angiotensin II.In addition, iron overload may enhance the formation of neointima under conditions of increased circulating angiotensin II but not catecholamines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.