Carcinogenesis is a multistep process, and tumors frequently harbor multiple mutations regulating genome integrity, cell division and death. The integrity of cellular genome is closely controlled by the mechanisms of DNA damage signaling and DNA repair. The association of breast cancer susceptibility genes BRCA1 and BRCA2 with breast and ovarian cancer development was first demonstrated over 20 years ago. Since then the germline mutations within these genes were linked to genomic instability and increased risk of many other cancer types. Genomic instability is an engine of the oncogenic transformation of non-tumorigenic cells into tumor-initiating cells and further tumor evolution. In this review we discuss the biological functions of BRCA1 and BRCA2 genes and the role of BRCA mutations in tumor initiation, regulation of cancer stemness, therapy resistance and tumor progression.
Purpose: The heavy chain of the CD98 protein (CD98hc) is encoded by the SLC3A2 gene. Together with the light subunit LAT1, CD98hc constitutes a heterodimeric transmembrane amino acid transporter. High SLC3A2 mRNA expression levels are associated with poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC) treated with radiochemotherapy. Little is known regarding the CD98hc protein-mediated molecular mechanisms of tumor radioresistance.Experimental Design: CD98hc protein expression levels were correlated with corresponding tumor control dose 50 (TCD 50 ) in HNSCC xenograft models. Expression levels of CD98hc and LAT1 in HNSCC cells were modulated by siRNA or CRISPR/Cas9 gene editing. HNSCC cell phenotypes were characterized by transcription profiling, plasma membrane proteomics, metabolic analysis, and signaling pathway activation. Expression levels of CD98hc and LAT1 proteins were examined by IHC analysis of tumor tissues from patients with locally advanced HNSCC treated with primary radiochemotherapy (RCTx). Primary endpoint was locoregional tumor control (LRC).Results: High expression levels of CD98hc resulted in an increase in mTOR pathway activation, amino acid metabolism, and DNA repair as well as downregulation of oxidative stress and autophagy. High expression levels of CD98hc and LAT1 proteins were significantly correlated and associated with an increase in radioresistance in HNSCC in vitro and in vivo models. High expression of both proteins identified a poor prognosis subgroup in patients with locally advanced HNSCC after RCTx.Conclusions: We found that CD98hc-associated signaling mechanisms play a central role in the regulation of HNSCC radioresistance and may be a promising target for tumor radiosensitization.
Prostate cancer (PCa) is the second most common malignancy and the sixth leading cause of cancer-related death among men worldwide. Prostate carcinogenesis is driven by the accumulation of genetic and epigenetic aberrations, which regulate cancer cell transition between a stem-and nonstem-cell state and accelerate tumor evolution. Elevated expression of enhancer of zeste homolog 2 (EZH2) histone methyltransferase, a core member of the polycomb repressive complex 2 (PRC2), results in cancer progression through histone methylation-driven tumor cells dedifferentiation. Previous studies demonstrated that tumor suppressor breast cancer 1 (BRCA1) is a negative regulator of PRC2-dependent H3K27 methylation. Our recent studies revealed that inhibition of EZH2-mediated histone methylation radiosensitizes prostate cancer stem cells (CSCs) population. However, the link between BRCA1 and EZH2 in regulation of prostate CSCs remains elusive. Present study demonstrated that BRCA1 and EZH2 are coregulated in patients' tumors and PCa cell lines, and cooperate in regulation of CSC phenotype and properties. Knockdown of BRCA1 expression significantly increases the number and the size of tumor spheres. Inhibition of BRCA1 and EZH2 expression leads to an increase of aldehyde dehydrogenase (ALDH)-positive cell population that is, at least partially, attributed to the upregulation of ALDH1A3 protein. Treatment with a global histone methylation inhibitor 3-Deazaneplanocin A abrogates this regulation, downregulates BRCA1 and EZH2 expression and has an inhibitory effect on the tumorigenic properties of radioresistant PCa cells in vivo. We found that EZH2/BRCA1 signaling mechanisms play an important role in the maintenance of prostate CSC properties and may be a promising target for tumor treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.