The aim of this study was to analyse the effect of different nitrogen increase rates in feedstock on the process stability and conversion efficiency in anaerobic digestion (AD). The research was conducted in continuously stirred tank reactors (CSTR), initially filled with two different inocula: inocula #1 with low and #2 with high nitrogen (N) concentrations. Three N feeding regimes were investigated: the “0-increase” feeding regime with a constant N amount in feeding and the regimes “0.25-increase” and “0.5-increase” where the N concentrations in feedstock were raised by 0.25 and 0.5 g·kg−1, respectively, related to fresh matter (FM) every second week. The N concentration inside the reactors increased according to the feeding regimes. The levels of inhibition (Inhibition) in specific methane yields (SMY), related to the conversion efficiency of the substrates, were quantified. At the N concentration in digestate of 10.82 ± 0.52 g·kg−1 FM measured in the reactors with inoculum #2 and “0.5-increase” feeding regime, the level of inhibition was equal to 38.99% ± 14.99%. The results show that high nitrogen increase rates in feeding regime are negatively related to the efficiency of the AD process, even if low volatile fatty acid (VFA) concentrations indicate a stable process.
Growing and utilizing bioenergy crops as feeding substrates in biogas plants may aid the development of the biogas sector in Ukraine. Therefore, research was done on potential methane yields from 22 high-yield varieties of 7 different crops grown in Ukraine for their biogas production suitability. Annual crops (maize, soybean, sweet sorghum and sorghum hybrids) and perennials (miscanthus, paulownia and switchgrass) harvested at three different harvesting times (H1, H2 and H3) related to specific stages of phenological development were investigated. The perennial crops studied were from different vegetation years. The samples were analysed in Ukraine on their dry matter- and volatile solids contents, dry matter yield (DMY) and crop nitrogen (N) uptake. The 55 °C -dried samples were delivered to Germany for their analysis with the Hohenheim Biogas Yield Test (HBT) on their specific methane yield (SMY). Based on DMY and SMY, the areal methane yields (AMY) were calculated. The highest SMY and AMY were found for maize, sweet sorghum and miscanthus. The highest average SMY of 0.35 ± 0.03 m3CH4 kgVS−1 was found for maize samples harvested at H2. Miscanthus “Giganteus” from the 8th vegetation year harvested at H1 has shown the highest AMY of 7404.50 ± 199.00 m3CH4 ha−1.
Nutrients can be recovered from the digestate of an agricultural biogas plant in the form of solid fraction and serve as crop fertilizers. Removal of suspended solids with screw press separators is the most commonly used technique for treating digestate from biogas plants. To increase separation efficiency and nutrient transfer to the solid phase during separation, eight biocoal-based additives were investigated, which were based on beech wood and produced by pyrolysis at temperatures of 350 °C and 600 °C. Four of the biocoals were impregnated with CaCl2 or MgCl2 before pyrolysis. The reaction time between the additives and the digestate varied from 5 min to 2 weeks. The application of MgCl2-impregnated biocoal synthesized at 600 °C for 20 h increased the nutrient removal efficiency by 76.33% for ammonium and 47.15% for phosphorus, compared to the control (the untreated digestate).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.