The ingestion of plastics appears to be widespread throughout the animal kingdom with risks to individuals, ecosystems and human health. Despite growing information on the location, abundance and size distribution of plastics in the environment, it cannot be assumed that any given animal will ingest all sizes of plastic encountered. Here, we use published data to develop an allometric relationship between plastic consumption and animal size to estimate the size distribution of plastics feasibly ingested by animals. Based on more than 2000 gut content analyses from animals ranging over three orders of magnitude in size (lengths 9 mm to 10 m), body length alone accounts for 42% of the variance in the length of plastic an animal may ingest and indicates a size ratio of roughly 20:1 between animal body length and the largest plastic the animal may ingest. We expect this work to improve global assessments of plastic pollution risk by introducing a quantifiable link between animals and the plastics they can ingest.
The extent to which prey traits combine to influence the abundance of predators is still poorly understood, particularly for mixed predators in sympatry and in aquatic ecosystems. In this study, we characterise prey use and distribution in iconic bird (grey wagtails and Eurasian dippers) and fish species (brown trout and Atlantic salmon) to assess whether prey traits could predict populations of these four riverine predators. Specifically, we hypothesised that: 1) prey key traits would predict predator populations more effectively than 2) diversity of prey traits, 3) the taxonomic abundance or richness of prey (known as traditional or mass-effect types of biodiversity) or 4) the prevailing environmental conditions. Combined predator population sizes were predicted better by a few key traits -specifically those revealing prey habitat use, size and drifting behaviour -than by prey diversity or prey trait diversity or environmental conditions. Our findings demonstrate that the complex relationships between prey assemblages and multiple predator species can be represented mechanistically when the key prey traits that govern encounter and consumption rates are identified. Given their apparent potential to reveal trophic relationships, and to complement more traditional measures of prey abundance, we advocate further development of trait-based approaches in predator-prey research.
By identifying fragments of DNA in the environment, eDNA approaches present a promising tool for monitoring biodiversity in a cost-effective way. This is particularly pertinent for countries where traditional morphological monitoring has been sparse. The first step to realising the potential of eDNA is to develop methodologies that are adapted to local conditions. Here, we test field and laboratory eDNA protocols (aqueous and sediment samples) in a range of semi-arid ecosystems in Namibia. We successfully gathered eDNA data on a broad suite of organisms at multiple trophic levels (including algae, invertebrates and bacteria) but identified two key challenges to the implementation of eDNA methods in the region: 1) high turbidity requires a tailored sampling technique and 2) identification of taxa by eDNA methods is currently constrained by a lack of reference data. We hope this work will guide the deployment of eDNA biomonitoring in the arid ecosystems of Namibia and neighbouring countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.