Recent evidence suggests that a rare population of self-renewing cancer stem cells (CSC) is responsible for cancer progression and therapeutic resistance. Chronic myeloid leukemia (CML) represents an important paradigm for understanding the genetic and epigenetic events involved in CSC production. CML progresses from a chronic phase (CP) in hematopoietic stem cells (HSC) that harbor the BCR-ABL translocation, to blast crisis (BC), characterized by aberrant activation of -catenin within granulocyte-macrophage progenitors (GMP). A major barrier to predicting and inhibiting blast crisis transformation has been the identification of mechanisms driving -catenin activation. Here we show that BC CML myeloid progenitors, in particular GMP, serially transplant leukemia in immunocompromised mice and thus are enriched for leukemia stem cells (LSC). Notably, cDNA sequencing of Wnt/-catenin pathway regulatory genes, including adenomatous polyposis coli, GSK3, axin 1, -catenin, lymphoid enhancer factor-1, cyclin D1, and c-myc, revealed a novel in-frame splice deletion of the GSK3 kinase domain in the GMP of BC samples that was not detectable by sequencing in blasts or normal progenitors. Moreover, BC CML progenitors with misspliced GSK3 have enhanced -catenin expression as well as serial engraftment potential while reintroduction of full-length GSK3 reduces both in vitro replating and leukemic engraftment. We propose that CP CML is initiated by BCR-ABL expression in an HSC clone but that progression to BC may include missplicing of GSK3 in GMP LSC, enabling unphosphorylated -catenin to participate in LSC self-renewal. Missplicing of GSK3 represents a unique mechanism for the emergence of BC CML LSC and might provide a novel diagnostic and therapeutic target.blast crisis chronic myeloid leukemia ͉ wnt pathway ͉ xenograft ͉ self-renewal ͉ cancer stem cells
SUMMARY Post-transcriptional adenosine-to-inosine RNA editing mediated by adenosine deaminase acting on RNA1 (ADAR1) promotes cancer progression and therapeutic resistance. However, ADAR1 editase-dependent mechanisms governing leukemia stem cell (LSC) generation have not been elucidated. In blast crisis chronic myeloid leukemia (BC CML), we show that increased JAK2 signaling and BCR-ABL1 amplification activate ADAR1. In a humanized BC CML mouse model, combined JAK2 and BCR-ABL1 inhibition prevents LSC self-renewal commensurate with ADAR1 downregulation. Lentiviral ADAR1 wild-type, but not an editing-defective ADAR1E912 mutant, induces self-renewal gene expression and impairs biogenesis of stem cell regulatory let-7 microRNAs. Combined RNA sequencing, qRT-PCR, CLIP-ADAR1, and pri-let-7 mutagenesis data suggest that ADAR1 promotes LSC generation via let-7 pri-microRNA editing and LIN28B upregulation. A small molecule tool compound antagonizes ADAR1’s effect on LSC self-renewal in stromal co-cultures and restores let-7 biogenesis. Thus, ADAR1 activation represents a unique therapeutic vulnerability in LSC with active JAK2 signaling.
Summary Leukemia stem cells (LSC) play a pivotal role in chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), in part, through alternative splicing of self-renewal and survival genes. To elucidate splice isoform regulators of human BC LSC maintenance, we performed whole transcriptome RNA sequencing; splice isoform-specific qRT-PCR, nanoproteomics, stromal co-culture and BC LSC xenotransplantation analyses. Cumulatively, these studies show that alternative splicing of multiple pro-survival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSC that are quiescent in the marrow niche and contribute to therapeutic resistance. Notably, a novel pan-BCL2 inhibitor, sabutoclax, renders marrow niche-resident BC LSC sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice isoform expression in BC LSC maintenance and suggest that combinatorial inhibition of pro-survival BCL2 family proteins and BCR-ABL may eliminate dormant LSC and obviate resistance.
The nature and even existence of adult pancreatic endocrine stem or progenitor cells is a subject of controversy in the field of beta-cell replacement for diabetes. One place to search for such cells is in the nonendocrine fraction of cells that remain after islet isolation, which consist of a mixture of epithelia and mesenchyme. Culture in G418 resulted in elimination of the mesenchymal cells, leaving a highly purified population of nonendocrine pancreatic epithelial cells (NEPECs). To evaluate their differentiation potential, NEPECs were heritably marked and transplanted under the kidney capsule of immunodeficient mice. When cotransplanted with fetal pancreatic cells, NEPECs were capable of endocrine differentiation. We found no evidence of beta-cell replication or cell fusion that could have explained the appearance of insulin positive cells from a source other than NEPECs. Nonendocrine-to-endocrine differentiation of NEPECs supports the existence of endocrine stem or progenitor cells within the epithelial compartment of the adult human pancreas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.