Abstract. In this paper, we introduce StringFuzz: a modular SMT-LIB problem instance transformer and generator for string solvers. We supply a repository of instances generated by StringFuzz in SMT-LIB 2.0/2.5 format. We systematically compare Z3str3, CVC4, Z3str2, and Norn on groups of such instances, and identify those that are particularly challenging for some solvers. We briefly explain our observations and show how StringFuzz helped discover causes of performance degradations in Z3str3.
Dependent Object Types (DOT) is intended to be a core calculus for modelling Scala. Its distinguishing feature is abstract type members, elds in objects that hold types rather than values. Proving soundness of DOT has been surprisingly challenging, and existing proofs are complicated, and reason about multiple concepts at the same time (e.g. types, values, evaluation). To serve as a core calculus for Scala, DOT should be easy to experiment with and extend, and therefore its soundness proof needs to be easy to modify. is paper presents a simple and modular proof strategy for reasoning in DOT. e strategy separates reasoning about types from other concerns. It is centred around a theorem that connects the full DOT type system to a restricted variant in which the challenges and paradoxes caused by abstract type members are eliminated. Almost all reasoning in the proof is done in the intuitive world of this restricted type system. Once we have the necessary results about types, we observe that the other aspects of DOT are mostly standard and can be incorporated into a soundness proof using familiar techniques known from other calculi.Our paper comes with a machine-veri ed version of the proof in Coq.
The Dependent Object Types (DOT) calculus serves as a foundation of the Scala programming language, with a machine-verified soundness proof. However, Scala's type system has been shown to be unsound due to null references, which are used as default values of fields of objects before they have been initialized. This paper proposes ιDOT, an extension of DOT for ensuring safe initialization of objects. DOT was previously extended to κDOT with the addition of mutable fields and constructors. To κDOT, ιDOT adds an initialization effect system that statically prevents the possibility of reading a null reference from an uninitialized object. To design ιDOT, we have reformulated the Freedom Before Commitment object initialization scheme in terms of disjoint subheaps to make it easier to formalize in an effect system and prove sound. Soundness of ιDOT depends on the interplay of three systems of rules: a type system close to that of DOT, an effect system to ensure definite assignment of fields in each constructor, and an initialization system that tracks the initialization status of objects in a stack of subheaps. We have proven the overall system sound and verified the soundness proof using the Coq proof assistant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.