The mannose receptor (MR) recognizes a range of carbohydrates present on the surface and cell walls of micro-organisms. The MR is primarily expressed on macrophages and dendritic cells and is involved in MR-mediated endocytosis and phagocytosis. In addition, the MR plays a key role in host defense and provides a link between innate and adaptive immunity. Herein, we will review the role of the MR in innate host defense as well as the recent evidence for its role in the adaptive response, for both humoral and cellular immune responses.
The T(c)-cell response to ectromelia virus infection was studied in BALB/c-H-2(db) mice which carry a loss mutation in the H-2D region that results in the absence from cell surfaces of a molecule (D') bearing certain public H-2 specificities. When infected, these mice showed a poor response of T(c) cells that recognize H-2D(d) plus virus-specific determinants on infected macrophage targets, but gave a normal response to H-2K d plus virus-specific antigens. However, their own infected macrophages do display wild-type antigenic patterns involving virus and H-2D(d) since they were killed as efficiently as wild-type (BALB/c,H- 2(d))-infected cells by T(c) cells specific only for H-2D(d) plus viral antigens. When tested in vitro, infected BALB/c-H-2(db) cells stimulated a poor T(c)-cell response to H-2D plus virus-specific antigens, but stimulated a normal response (in comparison with infected BALB/c macrophages) to H-2K(d) plus viral antigens. Uninfected BALB/c-H-2(db) cells stimulated a normal T(c)-cell response to minor H antigens or trinitrophenyl in association with H-2D(d), thus suggesting that the defective response to infection may reside in a failure of the relevant H-2D(d) antigens of mutant cells to physically associate with viral antigens. Close association of viral and H-2D-coded molecules was also suggested by ability of specific anti-H-2K or -H-2D to partially block T(c)-cell-mediated lysis of infected targets.
These results were interpreted to mean that H-2Dd-dependent, virus- immune T(c) cells recognized an antigenic pattern consisting of virus- specific and H-2D(d) determinants with the latter borne on an H-2D molecule carrying serologically-defined H-2D(d) private specificities. A second H-2D(d)-coded molecule (D') was not required for recognition and lysis by activated T(c) cells, but was apparently necessary for efficient stimulation of precursor T(c) cells, perhaps by promoting appropriate physical association of viral and H-2D(d) molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.