Water management is rapidly becoming one of the most pressing issues facing all countries in semi-arid and arid parts of the world. Global water consumption is predicted to increase by 50% in 2030, resulting in an acute water shortage. Presently, the agricultural sector consumes more than 70% of freshwater in most regions of the world, putting more pressure on water scarcity. Hydrogels are superabsorbent polymers that can hold plant nutrients and water when the soil around plant roots starts to dry out. Research evidence has revealed that water stored by hydrogel slowly returns to the soil, thereby increasing the volumetric water content of the soil. Hydrogel increases water use efficiency and irrigation intervals, decreases irrigation costs, and provides plants with the required nutrients and moisture. Numerous properties of hydrogels, including moderate water retention and high swelling, make them ideal as a safe delivery mechanism in agriculture for soil conditioners and agents for the controlled release of fertilizers. Numerous research publications on hydrogel polymer synthesis and its characteristics have been published. However, the current review emphasizes the critical role of superabsorbent hydrogels in an integrated approach for the balanced protection of seeds, plants, and soil to conserve the ecosystem.
Pyrethroids and DDT are key insecticides in the control of malaria, yellow fever, and lymphatic filariasis vectors. Knockdown and metabolic resistance mechanisms have been proven to be important in determining the efficacy of insecticides. Here we investigated cytochrome P450 as a resistance mechanism in Anopheles gambiae Giles and Culex quinquefasciatus Say exposed to deltamethrin and DDT. Two- to three-days-old adult female mosquitoes were used for insecticide exposures and PBO synergistic assays using WHO standard guidelines, kits and test papers (DDT 4%, deltamethrin 0.05%, and PBO 4%). Polymerase chain reaction (PCR) assays were used for the identification of the species and for characterization of the kdr allele. Mortality at 24 h post-exposure was 18 and 17% in An. gambiae s.s. exposed to DDT and deltamethrin, respectively; 1 and 5% in Cx. quinquefasciatus exposed to DDT and deltamethrin respectively. Significant ( P < 0.01) levels of susceptibility was recorded in mosquitoes pre-exposed to PBO, as KDT 50 and 24 h of exposure ranged from 37.6 min to 663.4 min and 27 to 80%, respectively. Presence of a knockdown resistance allele was recorded in An. gambiae s.s., 22.5% for homozygote resistance and 7.5% for heterozygotes, while Cx. quinquefasciatus populations showed no kdr allele despite the high level of resistance to DDT and deltamethrin. Findings from this study indicated that cytochrome P450 mono-oxygenase expression is highly implicated in the resistance phenotype to DDT and pyrethroids in An. gambiae and Cx. quinquefasciatus in the study area.
Background Aedes aegypti transmits several arboviral diseases of global public health threat such as dengue, zika, and yellow fever. Recently, a series of yellow fever outbreaks have been reported in different parts of the country. Globally, the control of mosquito-borne diseases has relied heavily on insecticides based vector control efforts. Therefore, we assessed the susceptibility status to three different classes of WHO approved insecticides and evaluated the importance of detoxifying enzymes on insecticides resistance in Aedes aegypti collected from Lagos State, Nigeria. Aedes aegypti immature stages were collected from suitable habitats in peri-domestic areas of Alimosho, Kosofe, Badagry, and Ibeju-Lekki Local Government Areas (LGAs) of Lagos State, 2–5 days old glucose-fed adult female mosquitoes were exposed to discriminating doses of DDT, permethrin, bendiocarb, and PBO synergist using WHO standard procedure and kits. Identification was through morphological means only. Results Resistance to DDT and permethrin was recorded in all the LGAs, suspected resistance to bendiocarb was recorded in Aedes aegypti from Alimosho while full susceptibility was recorded in other LGAs. PBO synergist significantly increases the 24 h mortality of DDT and permethrin-resistant Aedes aegypti in all the LGAs. The activities of both GSTs and cytochrome P450s increase with decreasing mortality for Aedes aegypti, regression value (R2) ranges from 0.8889 to 0.6224 for GSTs and 0.4379 to 0.616 for cytochrome P450s. Conclusions Aedes aegypti population from Lagos State, Nigeria, have developed resistance to DDT and permethrin, the activities of P450s and GST were implicated in DDT and permethrin resistance in this study. Therefore, a need for regular insecticides monitoring and PBO should be incorporated into Aedes aegypti insecticides control strategies to forestall development of resistance to DDT and pyrethriods.
Background The first case of the novel coronavirus disease-2019 (COVID-19) in West Africa was first confirmed in Nigeria in February 2020. Since then, several public health interventions and preventive measures have been implemented to curtail transmission of the causative agent, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Therefore, this study was performed to assess the knowledge, attitudes, and perceptions of West Africans towards COVID-19. Methods An online survey was conducted between 29 September to 29 October 2020 among West Africans. Thirty-three survey questions were designed to collect sociodemographic data and participants’ knowledge, attitude and perception towards COVID-19. The study targeted all West African nationals who were 18 years and above, and willing to participate in the study. Participants were either in-country or abroad. Results Overall, 1106 respondents (≥18 years) from 16 West African countries, with about 12.1% of them residing outside the West African subregion, participated in the survey. The respondents had an average COVID-19 knowledge score of 67.82 ± 8.31, with knowledge of the disease significantly associated with the country of residence (p = 0.00) and marginally (p = 0.05) so with settlement types (i.e., urban, suburban and rural areas). Most respondents (93.4%) could identify the main COVID-19 symptoms, and 73.20% would consult a healthcare professional if infected with SARS-CoV-2. Also, 75.2% of the respondents are willing to receive the COVID-19 vaccine, whereas 10.40% and 14.40% are unwilling and undecided, respectively. Perceptions of what constitute COVID-19 preventive measures were highly variable. Approximately, 8% of the respondents felt that their government responded excellently in managing the pandemic while a third felt that the response was just good. Also, more than half (54%) opined that isolation and treatment of COVID-19 patients is a way of curbing SARS-CoV-2 spread. Conclusions Most West Africans have basic knowledge of COVID-19 and showed a positive attitude, with likely proactive practice towards the disease. However, results showed that these varied across countries and are influenced by the types of settlements. Therefore, the health and education authorities in various countries should develop focused measures capturing people in different settlements to improve their preventative measures when designing public health interventions for COVID-19 and any future epidemics or pandemics.
Eggplant is the fifth economically most important vegetable in the Solanaceae family after tomato, potato, chili, and tobacco. Apart from the well-cultivated brinjal or aubergine eggplant (Solanum melongena L.), two other underutilized eggplant species, the African eggplant (S. macrocarpon L.) and the scarlet eggplant (S. aethiopicum L.), were also cultivated with local importance where the leaves and fruits are used for food and medicinal purposes. The major objectives of the eggplant breeding program are to improve fruit quality, increase yield performance through heterosis breeding, and introduce pest and disease resistances from wild relatives. Europe and Asia hold a wide collection of germplasm resources with significant potential for genetic improvement. While cultivated eggplant is susceptible to several fungi and bacteria, many wild relatives offer potential resistance to these pathogens. In this paper, we review the genetic resources and diversity of cultivated eggplant and its wild relatives. As a point of departure, we examine the economic importance, domestication, taxonomy characterization, and relationships of the crop and its wild relatives. The importance of evaluating and safeguarding wild relatives is highlighted, as crop wild relatives are highly underrepresented. A key section in this study is an overview dedicated to genetic resources, resistance to biotic and abiotic stresses, pre-breeding, and breeding for sustainable eggplant production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.