The field of nanofluids has received interesting attention since the concept of dispersing nanoscaled particles into a fluid was first introduced in the later part of the twentieth century. This is evident from the increased number of studies related to nanofluids published annually. The increasing attention on nanofluids is primarily due to their enhanced thermophysical properties and their ability to be incorporated into a wide range of thermal applications ranging from enhancing the effectiveness of heat exchangers used in industries to solar energy harvesting for renewable energy production. Owing to the increasing number of studies relating to nanofluids, there is a need for a holistic review of the progress and steps taken in 2019 concerning their application in heat transfer devices. This review takes a retrospective look at the year 2019 by reviewing the progress made in the area of nanofluids preparation and the applications of nanofluids in various heat transfer devices such as solar collectors, heat exchangers, refrigeration systems, radiators, thermal storage systems and electronic cooling. This review aims to update readers on recent progress while also highlighting the challenges and future of nanofluids as the next-generation heat transfer fluids. Finally, a conclusion on the merits and demerits of nanofluids is presented along with recommendations for future studies that would mobilise the rapid commercialisation of nanofluids.
Solar thermal collectors are systems that allow for the use of solar energy in thermal applications. These collectors utilize a heat transfer fluid to transport absorbed solar radiation to applications where they are needed. Scientists in a bid to improve the conversion efficiency of solar collectors have suggested different collector designs and improved collector materials. Over the last 25 years, the study of nanofluids and their applications have revolutionized material science, and nanotechnology has found applications in improving solar collector materials. This article reviews the impact of different nanomaterials on the efficiency of solar collectors. The study also outlines the limitations of applying nanofluids and discusses the long-term challenges of their application to solar collectors. Nanofluids have the potential to improve the overall efficiency of most solar collectors, however, the full potential of nanofluids in heat transfer applications cannot be completely achieved until some of the questions regarding hysteresis, stability, and the overall predictability of nanofluids are answered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.