Genital chlamydia infection in women causes complications such as pelvic inflammatory disease and tubal factor infertility, but it is unclear why some women are more susceptible than others. Possible factors, such as time of day of chlamydia infection on chlamydial pathogenesis has not been determined. We hypothesised that infections during the day, will cause increased complications compared to infections at night. Mice placed under normal 12:12 light: dark (LD) cycle were infected intravaginally with Chlamydia muridarum either at zeitgeber time 3, ZT3 and ZT15. Infectivity was monitored by periodic vaginal swabs and chlamydiae isolation. Blood and vaginal washes were collected for host immunologic response assessments. The reproductive tracts of the mice were examined histopathologically, and fertility was determined by embryo enumeration after mating. Mice infected at ZT3 shed significantly more C. muridarum than mice infected at ZT15. This correlated with the increased genital tract pathology observed in mice infected at ZT3. Mice infected at ZT3 were less fertile than mice infected at ZT15. The results suggest that the time of day of infection influences chlamydial pathogenesis, it indicates a possible association between complications from chlamydia infection and host circadian clock, which may lead to a better understanding of chlamydial pathogenesis.
Background Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. Results Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. Conclusions This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5495-6) contains supplementary material, which is available to authorized users.
Vaccine-induced immune responses following immunization with promising Chlamydia vaccines protected experimental animals from Chlamydia-induced upper genital tract pathologies and infertility. In contrast, primary genital infection with live Chlamydia does not protect against these pathologies. We hypothesized that differential miRNA profiles induced in the upper genital tracts (UGT) of mice correlate with the disparate immunity vs. pathologic outcomes associated with vaccine immunization and chlamydial infection. Thus, miRNA expression profiles in the UGT of mice after Chlamydia infection (Live EB) and immunization with dendritic cell (DC)-based vaccine (DC vaccine) or VCG-based vaccine (VCG vaccine) were compared using the NanoString nCounter Mouse miRNA assay. Of the 602 miRNAs differentially expressed (DE) in the UGT of immunized and infected mice, we selected 58 with counts >100 and p-values < 0.05 for further analysis. Interestingly, vaccine immunization and Chlamydia infection induced the expression of distinct miRNA profiles with a higher proportion in vaccine-immunized compared to Chlamydia infected mice; DC vaccine (41), VCG vaccine (23), and Live EB (15). Hierarchical clustering analysis showed notable differences in the uniquely DE miRNAs for each experimental group, with DC vaccine showing the highest number (21 up-regulated, five down-regulated), VCG vaccine (two up-regulated, five down-regulated), and live EB (two up-regulated, four down-regulated). The DC vaccine-immunized group showed the highest number (21 up-regulated and five down-regulated compared to two up-regulated and four down-regulated in the live Chlamydia infected group). Pathway analysis showed that the DE miRNAs target genes that regulate several biological processes and functions associated with immune response and inflammation. These results suggest that the induction of differential miRNA expression plays a significant role in the disparate immunity outcomes associated with Chlamydia infection and vaccination.
A rise in new HIV diagnoses among older adults is characterized by poor prognosis and reduced survival times. Although heterosexual transmission remains the main route of infection in women, little is known regarding immune functions in the genital tract of postmenopausal women, especially those who are HIV positive. Furthermore, effects of hormone replacement therapy (HRT) on the genital tract immune system are unclear. Using the Women's Interagency HIV Study repository, we obtained cervical-vaginal lavage (CVL) samples from premenopausal and postmenopausal HIV-positive and HIV-negative women, some of whom were on HRT. Samples were assayed for interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-a, secretory leukocyte protease inhibitor (SLPI), Elafin, human beta defensin-2 (HBD2), and macrophage inflammatory protein (MIP)-3a using ELISA. Anti-HIV activity in CVL was measured using TZM-bl indicator cells. Among HIV-positive women, the plasma viral load was significantly higher and CD4 count was significantly lower in postmenopausal compared with premenopausal women. Postmenopausal women, irrespective of HIV status, had significantly lower levels of HBD2 compared with premenopausal women. Among the HIV-negative individuals, postmenopausal women had significantly lower levels of MIP-3a, IL-6, and SLPI compared with premenopausal women. In contrast, HIV-positive postmenopausal women had significantly higher levels of TNF-a compared with HIV-positive premenopausal women. In most cases, HRT groups resembled the postmenopausal groups. No significant differences in anti-HIV activity by menopausal or by HIV status were noted. Our findings indicate that the female genital tract immune microenvironment is distinct by menopausal status and HIV status. Further studies are needed to assess the risk of HIV acquisition/transmission in this population.
BackgroundData are limited about the burden of respiratory syncytial virus (RSV)-related hospitalizations in older adults and those with COPD or CHF.MethodsWe conducted prospective surveillance at two hospitals from October 2018 to March 2019 for adults ≥50 years of age admitted with acute respiratory infections (ARI) and adults of any age with COPD or CHF-related admissions. Adults were eligible if they were residents of an 8 county region in Atlanta, Georgia. Asymptomatic adults ≥50 years of age were enrolled as controls. Nasopharyngeal and oropharyngeal swabs were tested for RSV and influenza (Flu) using BioFire® FilmArray® Respiratory Viral Panel (RVP) and acute/convalescent serology was obtained for RSV antibodies detection by enzyme immunoassay against RSV lysate. Standard of care results were included for enrollees. We compare the number of RSV+, Flu+ and RSV−/Flu− cases along with demographic features and outcomes.ResultsWe screened 12,453 patients to identify 1,515 eligible adults of which 617 (41%) were enrolled. The most common reasons for failing to enroll were refusal (676, 75%) and inability to obtain informed consent (221, 25%). Of the 617, 36 (6%) were RSV+ and 41 (7%) were Flu+. RSV was detected in 1/126 (0.8%) and Flu in 0/126 healthy controls. RSV+ occurred earlier in surveillance and peaked at a higher frequency (figure). Clinical characteristics and outcomes are in the table. In a convenience sample, a four-fold rise in RSV antibody titer was detected among 8/15 RSV+, 0/42 RSV−/Flu−, and 0/42 healthy controls.ConclusionThe burden and outcomes for RSV are similar to Flu in adults admitted to the hospital with ARI, CHF, or COPD. A vaccine for RSV would be beneficial. DisclosuresNadine Rouphael, MD, Merck: I conduct as Emory PI the PNEUMO MERCK study at Emory, Research Grant; Pfizer: I conduct as co-PI the RSV PFIZER study at Emory, Research Grant; Sanofi-Pasteur: I conducted as Emory PI the CDIFFENSE trial at Emory, Research Grant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.