Abstract:It is known that parameter selection for data sampling frequency and segmentation techniques (including different methods and window sizes) has an impact on the classification accuracy. For Ambient Assisted Living (AAL), no clear information to select these parameters exists, hence a wide variety and inconsistency across today's literature is observed. This paper presents the empirical investigation of different data sampling rates, segmentation techniques and segmentation window sizes and their effect on the accuracy of Activity of Daily Living (ADL) event classification and computational load for two different accelerometer sensor datasets. The study is conducted using an ANalysis Of VAriance (ANOVA) based on 32 different window sizes, three different segmentation algorithm (with and without overlap, totaling in six different parameters) and six sampling frequencies for nine common classification algorithms. The classification accuracy is based on a feature vector consisting of Root Mean Square (RMS), Mean, Signal Magnitude Area (SMA), Signal Vector Magnitude (here SMV), Energy, Entropy, FFTPeak, Standard Deviation (STD). The results are presented alongside recommendations for the parameter selection on the basis of the best performing parameter combinations that are identified by means of the corresponding Pareto curve.
Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions.
With the Internet of Everything (IoE) paradigm that gathers almost every object online, huge traffic workload, bandwidth, security, and latency issues remain a concern for IoT users in today's world. Besides, the scalability requirements found in the current IoT data processing (in the cloud) can hardly be used for applications such as assisted living systems, Big Data analytic solutions, and smart embedded applications. This paper proposes an extended cloud IoT model that optimizes bandwidth while allowing edge devices (Internet-connected objects/devices) to smartly process data without relying on a cloud network. Its integration with a massively scaled spine-leaf (SL) network topology is highlighted. This is contrasted with a legacy multitier layered architecture housing network services and routing policies. The perspective offered in this paper explains how low-latency and bandwidth intensive applications can transfer data to the cloud (and then back to the edge application) without impacting QoS performance. Consequently, a spine-leaf Fog computing network (SL-FCN) is presented for reducing latency and network congestion issues in a highly distributed and multilayer virtualized IoT datacenter environment. This approach is cost-effective as it maximizes bandwidth while maintaining redundancy and resiliency against failures in mission critical applications.
The vast amount of literature on human ambulation and Activities of Daily Living (ADL) events classification has highlighted significant details on most aspects of the research area including: monitoring techniques, Wearable Sensor-based Monitoring Device (WSMD) placement on human body parts, and ambulation and ADL data collection methods, among others. However literature has failed to highlight meaningful details on one of the most important aspects of such studies, sensor data segmentation for feature extraction. The choice of segmentation techniques is in general very important, because inappropriate segmentation will most likely result in features without discriminant power. No classifier of whatever sophistication will give meaningful results with features that have no discriminant power. The optimal segmentation technique has been empirically investigated using sensor data from a bi-axial accelerometer. Results of the empirical investigation are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.