This research proposes a study on two-way communication between deaf/mute and normal people using an Android application. Despite advancements in technology, there is still a lack of mobile applications that facilitate two-way communication between deaf/mute and normal people, especially by using Bahasa Isyarat Malaysia (BIM). This project consists of three parts: First, we use BIM letters, which enables the recognition of BIM letters and BIM combined letters to form a word. In this part, a MobileNet pre-trained model is implemented to train the model with a total of 87,000 images for 29 classes, with a 10% test size and a 90% training size. The second part is BIM word hand gestures, which consists of five classes that are trained with the SSD-MobileNet-V2 FPNLite 320 × 320 pre-trained model with a speed of 22 s/frame rate and COCO mAP of 22.2, with a total of 500 images for all five classes and first-time training set to 2000 steps, while the second- and third-time training are set to 2500 steps. The third part is Android application development using Android Studio, which contains the features of the BIM letters and BIM word hand gestures, with the trained models converted into TensorFlow Lite. This feature also includes the conversion of speech to text, whereby this feature allows converting speech to text through the Android application. Thus, BIM letters obtain 99.75% accuracy after training the models, while BIM word hand gestures obtain 61.60% accuracy. The suggested system is validated as a result of these simulations and tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.