Organometallic halide perovskites attract strong interests for their high photoresponsivity and solar cell efficiency. However, there was no systematic study of their power-and frequencydependent photoresponsivity. We identified two different powerdependent photoresponse types in methylammonium lead iodide perovskite (MAPbI 3 ) photodetectors. In the first type, the photoresponse remains constant from 5 Hz to 800 MHz. In the second type, absorption of a single photon can generate a persistent photoconductivity of 30 pA under an applied electric field of 2.5 × 10 4 V/ cm. Additional absorbed photons, up to 8, linearly increase the persistent photoconductivity, which saturates with the absorption of more than 10 photons. This is different than single-photon avalanche detectors (SPADs) because the single-photon response is persistent as long as the device is under bias, providing unique opportunities for novel electronic and photonic devices such as analogue memories for neuromorphic computing. We propose an avalanche-like process for iodine ions and estimate that absorption of a single 0.38 aJ photon triggers the motion of 10 8−9 ions, resulting in accumulations of ions and charged vacancies at the MAPbI 3 /electrode interfaces to cause the band bending and change of electric material properties. We have made the first observation that single-digit photon absorption can alter the macroscopic electric and optoelectronic properties of a perovskite thin film.
Since impact ionization was observed in semiconductors over half a century ago, avalanche photodiodes (APDs) using impact ionization in a fashion of chain reaction have been the most sensitive semiconductor photodetectors. However, APDs have relatively high excess noise, a limited gain-bandwidth product, and high operation voltage, presenting a need for alternative signal amplification mechanisms of superior properties. As an amplification mechanism, the cycling excitation process (CEP) was recently reported in a silicon p-n junction with subtle control and balance of the impurity levels and profiles. Realizing that CEP effect depends on Auger excitation involving localized states, we made the counter intuitive hypothesis that disordered materials, such as amorphous silicon, with their abundant localized states, can produce strong CEP effects with high gain and speed at low noise, despite their extremely low mobility and large number of defects. Here, we demonstrate an amorphous silicon low noise photodiode with gain-bandwidth product of over 2 THz, based on a very simple structure. This work will impact a wide range of applications involving optical detection because amorphous silicon, as the primary gain medium, is a low-cost, easy-to-process material that can be formed on many kinds of rigid or flexible substrates.
We present a method, Transient Induced Molecular Electronic Spectroscopy (TIMES), to detect protein-ligand interactions without any protein engineering or chemical modification. We developed a physics model for the TIMES signal and mathematically formulated the problem to attain physical insight of protein-ligand interactions without any disturbances by molecular probes, fluorescent labels, or immobilization of molecules. To demonstrate the functionality of this method, we have used the TIMES signals to find the dissociation constants for the affinity of reactions, the shear-stress dependent adsorption time of molecules on surface, and other interesting features of protein-ligand interaction in native conditions. As a unique tool, TIMES offers a simple and effective method to investigate fundamental protein chemistry and drug discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.