Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. SORST, JST, Chiyoda-ku, Tokyo, JapanThree strains of a spore-forming, Gram-positive, motile, rod-shaped and boron-tolerant bacterium were isolated from soil. The strains, designated 10a T , 11c and 12B, can tolerate 5 % (w/v) NaCl and up to 150 mM boron, but optimal growth was observed without addition of boron or NaCl in Luria-Bertani agar medium. The optimum temperature for growth was 37 6C (range 16-45 6C) and the optimum pH was 7.0-8.0 (range pH 5.5-9.5). A comparative analysis of the 16S rRNA gene sequence demonstrated that the isolated strains were closely related to Bacillus fusiformis DSM 2898 T (97.2 % similarity) and Bacillus sphaericus DSM 28 T (96.9 %). DNA-DNA relatedness was greater than 97 % among the isolated strains and 61.1 % with B. fusiformis DSM 2898 T and 43.2 % with B. sphaericus IAM 13420 T . The phylogenetic and phenotypic analyses and DNA-DNA relatedness indicated that the three strains belong to the same species, that was characterized by a DNA G+C content of 36.5-37.9 mol%, MK-7 as the predominant menaquinone system and iso-C 15 : 0 (32 % of the total) as a major cellular fatty acid. In contrast to the type species of the genus Bacillus, the strains contained peptidoglycan with lysine, aspartic acid, alanine and glutamic acid. Based on the distinctive peptidoglycan composition, phylogenetic analyses and physiology, the strains are assigned to a novel species within a new genus, for which the name Lysinibacillus boronitolerans gen. nov., sp. nov. is proposed. The type strain of Lysinibacillus boronitolerans is strain 10aIt is also proposed that Bacillus fusiformis and Bacillus sphaericus be transferred to this genus as Lysinibacillus fusiformis comb. nov. and Lysinibacillus sphaericus comb. nov., respectively.
The Ganges–Brahmaputra delta enables Bangladesh to sustain a dense population, but it also exposes people to natural hazards. This article presents findings from the Gibika project, which researches livelihood resilience in seven study sites across Bangladesh. This study aims to understand how people in the study sites build resilience against environmental stresses, such as cyclones, floods, riverbank erosion, and drought, and in what ways their strategies sometimes fail. The article applies a new methodology for studying people’s decision making in risk-prone environments: the personal Livelihood History interviews (N = 28). The findings show how environmental stress, shocks, and disturbances affect people’s livelihood resilience and why adaptation measures can be unsuccessful. Floods, riverbank erosion, and droughts cause damage to agricultural lands, crops, houses, and properties. People manage to adapt by modifying their agricultural practices, switching to alternative livelihoods, or using migration as an adaptive strategy. In the coastal study sites, cyclones are a severe hazard. The study reveals that when a cyclone approaches, people sometimes choose not to evacuate: they put their lives at risk to protect their livelihoods and properties. Future policy and adaptation planning must use lessons learned from people currently facing environmental stress and shocks.
Three strains of gram-positive, motile, rod-shaped and boron (B)-tolerant bacterium were isolated from naturally B containing soil of Hisarcik area in the Kutahya Province, Turkey. The strains, designated as T-14A, T-15Z(T) and T-17s, produced spherical or ellipsoidal endospores in a terminal bulging sporangium. The strains required B for the growth and can tolerate more than 450 mM B. These also tolerated up to 7.0% (w/v) NaCl in the presence of 50 mM B in agar medium but grew optimally without NaCl. The temperature range for growth was 16-37 degrees C (optimal of 30 degrees C), whereas the pH range was 6.5-9.0 (optimal of 7.5-8.5). The DNA G + C content was 41.1-42.2 mol% and the predominant cellular fatty acid was iso-C(15:0). The major respiratory quinone system was detected as MK-7 and the diamino acid of the peptidoglycan was meso-diaminopimelic acid. Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis of 16S rRNA gene sequences data and DNA-DNA re-association values, we concluded that the three strains belong to a novel species of the genus Bacillus, the type strain of which is T-15Z(T) and for which we proposed the name, B. boroniphilus sp. nov. (DSM 17376(T) = IAM 15287(T) = ATCC BAA-1204(T)).
The legume Arachis hypogaea, commonly known as peanut or groundnut, is a very important food crop throughout the tropics and subtropics. Peanut is one of the most widely used legumes due to its nutrition and taste, and it occupies a rank of major oilseed crop in the world. It has been recognized as a functional food due to its role in a health promoting effect. Peanut oil contains a well-balanced fatty acid and antioxidant profile that provide protection against harmful substances especially free radicals. This paper gives an overview of scientific literature available on phytochemical and functional properties of peanut oil. Owing to its unique organoleptic properties associated with its cardioprotective and anti-inflammatory properties, peanut oil has found, recently, its place on the highly competitive international edible oil market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.