In this article, we describe a new command, xtbcfe, that performs the iterative bootstrap-based bias correction for the fixed-effects estimator in dynamic panels proposed by Everaert and Pozzi (2007, Journal of Economic Dynamics and Control 31: 1160-1184). We first simplify the core of their algorithm by using the invariance principle and subsequently extend it to allow for unbalanced and higherorder dynamic panels. We implement various bootstrap error resampling schemes to account for general heteroskedasticity and contemporaneous cross-sectional dependence. Inference can be performed using a bootstrapped variance-covariance matrix or percentile intervals. Monte Carlo simulations show that the simplification of the original algorithm results in a further bias reduction for very small T. The Monte Carlo results also support the bootstrap-based bias correction in higher-order dynamic panels and panels with cross-sectional dependence. We illustrate the command with an empirical example estimating a dynamic labor-demand function.
This article extends the common correlated effects pooled (CCEP) estimator to homogenous dynamic panels. In this setting, CCEP suffers from a large bias when the time span (T) of the dataset is fixed. We develop a bias-corrected CCEP estimator that is consistent as the number of cross-sectional units (N) tends to infinity, for T fixed or growing large, provided that the specification is augmented with a sufficient number of cross-sectional averages, and lags thereof. Monte Carlo experiments show that the correction offers strong improvements in terms of bias and variance. We apply our approach to estimate the dynamic impact of temperature shocks on aggregate output growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.