Background: The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes.
In this paper, we propose a robust wavelet domain method for noise filtering in medical images. The proposed method adapts itself to various types of image noise as well as to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The algorithm exploits generally valid knowledge about the correlation of significant image features across the resolution scales to perform a preliminary coefficient classification. This preliminary coefficient classification is used to empirically estimate the statistical distributions of the coefficients that represent useful image features on the one hand and mainly noise on the other. The adaptation to the spatial context in the image is achieved by using a wavelet domain indicator of the local spatial activity. The proposed method is of low complexity, both in its implementation and execution time. The results demonstrate its usefulness for noise suppression in medical ultrasound and magnetic resonance imaging. In these applications, the proposed method clearly outperforms single-resolution spatially adaptive algorithms, in terms of quantitative performance measures as well as in terms of visual quality of the images.
This paper presents a new wavelet-based image denoising method, which extends a "geometrical" Bayesian framework. The new method combines three criteria for distinguishing supposedly useful coefficients from noise: coefficient magnitudes, their evolution across scales and spatial clustering of large coefficients near image edges. These three criteria are combined in a Bayesian framework. The spatial clustering properties are expressed in a prior model. The statistical properties concerning coefficient magnitudes and their evolution across scales are expressed in a joint conditional model. The three main novelties with respect to related approaches are (1) the interscale-ratios of wavelet coefficients are statistically characterized and different local criteria for distinguishing useful coefficients from noise are evaluated, (2) a joint conditional model is introduced, and (3) a novel anisotropic Markov random field prior model is proposed. The results demonstrate an improved denoising performance over related earlier techniques.
To improve the EEG source localization in the brain, the conductivities used in the head model play a very important role. In this study, we focus on the modeling of the anisotropic conductivity of the white matter. The anisotropic conductivity profile can be derived from diffusion weighted magnetic resonance images (DW-MRI). However, deriving these anisotropic conductivities from diffusion weighted MR images of the white matter is not straightforward. In the literature, two methods can be found for calculating the conductivity from the diffusion weighted images. One method uses a fixed value for the ratio of the conductivity in different directions, while the other method uses a conductivity profile obtained from a linear scaling of the diffusion ellipsoid. We propose a model which can be used to derive the conductivity profile from the diffusion tensor images. This model is based on the variable anisotropic ratio throughout the white matter and is a combination of the linear relationship as stated in the literature, with a constraint on the magnitude of the conductivity tensor (also known as the volume constraint). This approach is stated in the paper as approach A. In our study we want to investigate dipole estimation differences due to using a more simplified model for white matter anisotropy (approach B), while the electrode potentials are derived using a head model with a more realistic approach for the white matter anisotropy (approach A). We used a realistic head model, in which the forward problem was solved using a finite difference method that can incorporate anisotropic conductivities. As error measures we considered the dipole location error and the dipole orientation error. The results show that the dipole location errors are all below 10 mm and have an average of 4 mm in gray matter regions. The dipole orientation errors ranged up to 66.4 degrees, and had a mean of, on average, 11.6 degrees in gray matter regions. In a qualitative manner, the results show that the orientation and location error is dependent on the orientation of the test dipole. The location error is larger when the orientation of the test dipole is similar to the orientation of the anisotropy, while the orientation error is larger when the orientation of the test dipole deviates from the orientation of the anisotropy. From these results, we can conclude that the modeling of white matter anisotropy plays an important role in EEG source localization. More specifically, accurate source localization will require an accurate modeling of the white matter conductivity profile in each voxel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.