Imaging plays an important role in the diagnosis, characterization, and management of infectious liver disease. In clinical practice, the main contributions of imaging are in detecting early disease, excluding other entities with a similar presentation, establishing a definitive diagnosis when classic findings are present, and guiding appropriate antimicrobial, interventional, or surgical treatment. The most common imaging features of bacterial, viral, parasitic, and fungal hepatic infections are described, and key imaging and clinical manifestations are reviewed that may be useful to narrow the differential diagnosis and avoid pitfalls in image interpretation. Ultrasonography (US), computed tomography (CT), and magnetic resonance imaging allow accurate detection of most hepatic infections and, in some circumstances, may provide specific signs to identify the underlying pathogen and exclude other entities with similar imaging features. In bacterial and parasitic infections, specific imaging features may be enough to exclude a neoplasm and, occasionally, to identify the underlying infectious agent. US and CT are important means to guide percutaneous aspiration or drainage when needed. In viral infections, imaging is critical to exclude entities that may manifest with similar clinical and laboratory findings. Disseminated fungal infections require early detection at imaging because they can be fatal if not promptly treated. Familiarity with the epidemiology, pathogenesis, clinical manifestations, imaging features, and treatment of hepatic infections can aid in radiologic diagnosis and guide appropriate patient care. (©)RSNA, 2016.
Background Subtraction CT angiography (sCTA) is a technique used to evaluate pulmonary perfusion based on iodine distribution maps. The aim of this study is to assess lung perfusion changes with sCTA seen in patients with COVID-19 pneumonia and correlate them with clinical outcomes. Material and methods A prospective cohort study was carried out with 45 RT-PCR-confirmed COVID-19 patients that required hospitalization at three different hospitals, between April and May 2020. In all cases, a basic clinical and demographic profile was obtained. Lung perfusion was assessed using sCTA. Evaluated imaging features included: Pattern predominance of injured lung parenchyma in both lungs (ground-glass opacities, consolidation and mixed pattern) and anatomical extension; predominant type of perfusion abnormality (increased perfusion or hypoperfusion), perfusion abnormality distribution (focal or diffuse), extension of perfusion abnormalities (mild, moderate and severe involvement); presence of vascular dilatation and vascular tortuosity. All participants were followed-up until hospital discharge searching for the development of any of the study endpoints. These endpoints included intensive-care unit (ICU) admission, initiation of invasive mechanical ventilation (IMV) and death. Results Forty-one patients (55.2 ± 16.5 years, 22 men) with RT-PCR-confirmed SARS-CoV-2 infection and an interpretable iodine map were included. Patients with perfusion anomalies on sCTA in morphologically normal lung parenchyma showed lower Pa/Fi values (294 ± 111.3 vs. 397 ± 37.7, p = 0.035), and higher D-dimer levels (1156 ± 1018 vs. 378 ± 60.2, p < 0.01). The main common patterns seen in lung CT scans were ground-glass opacities, mixed pattern with predominant ground-glass opacities and mixed pattern with predominant consolidation in 56.1%, 24.4% and 19.5% respectively. Perfusion abnormalities were common (36 patients, 87.8%), mainly hypoperfusion in areas of apparently healthy lung. Patients with severe hypoperfusion in areas of apparently healthy lung parenchyma had an increased probability of being admitted to ICU and to initiate IMV (HR of 11.9 (95% CI 1.55–91.9) and HR 7.8 (95% CI 1.05–61.1), respectively). Conclusion Perfusion abnormalities evidenced in iodine maps obtained by sCTA are associated with increased admission to ICU and initiation of IMV in COVID-19 patients.
The extrapleural space (EPS) is an anatomic space at the periphery of the chest that can be involved in a number of disease processes. This space lies between the inner surface of the ribs and the parietal pleura and contains adipose tissue, loose connective tissue, lymph nodes, vessels, endothoracic fascia, and the innermost intercostal muscle. It is often overlooked on cross-sectional imaging studies and almost invariably overlooked on conventional radiographic studies. At conventional radiography, the EPS occasionally can be seen when there is extrapleural fat proliferation, which might be confused with pleural thickening or pleural effusion. Knowledge of the normal anatomy of the EPS depicted at computed tomography (CT) and of the relationship of the EPS with parenchymal, pleural, and chest wall processes is key to the detection of extrapleural abnormalities. Disease entities that most commonly affect the EPS include chronic inflammatory disorders, infection, trauma, and neoplasms. Chronic inflammatory conditions and infectious processes of the lungs and pleurae induce adipocyte proliferation adjacent to the inflamed tissue, resulting in increased extrapleural fat. Chest wall trauma with extrapleural hematoma formation causes characteristic CT findings that enable differentiation of the extrapleural hematoma from hemothorax and warrant a different treatment approach. Extrapleural air is commonly seen in patients with pneumomediastinum and should be distinguished from pneumothorax because it requires a different treatment approach. Intrathoracic neoplasms can cause an increase in the attenuation of normal extrapleural fat owing to pleural inflammation, lymphatic obstruction, lymphangitic spread, or direct invasion by tumor. The normal and pathologic appearances of the EPS, as depicted at thoracic CT, and the differential diagnosis of findings in the EPS are reviewed. RSNA, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.