This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity.The methods reviewed comprise classical gait rehabilitation techniques (neurophysiological and motor learning approaches), functional electrical stimulation (FES), robotic devices, and brain-computer interfaces (BCI).From the analysis of these approaches, we can draw the following conclusions. Regarding classical rehabilitation techniques, there is insufficient evidence to state that a particular approach is more effective in promoting gait recovery than other. Combination of different rehabilitation strategies seems to be more effective than over-ground gait training alone. Robotic devices need further research to show their suitability for walking training and their effects on over-ground gait. The use of FES combined with different walking retraining strategies has shown to result in improvements in hemiplegic gait. Reports on non-invasive BCIs for stroke recovery are limited to the rehabilitation of upper limbs; however, some works suggest that there might be a common mechanism which influences upper and lower limb recovery simultaneously, independently of the limb chosen for the rehabilitation therapy. Functional near infrared spectroscopy (fNIRS) enables researchers to detect signals from specific regions of the cortex during performance of motor activities for the development of future BCIs. Future research would make possible to analyze the impact of rehabilitation on brain plasticity, in order to adapt treatment resources to meet the needs of each patient and to optimize the recovery process.
BackgroundThis study addressed the problem of evaluating the effectiveness of two protocols of physiotherapy for functional recovery after stroke. In particular, the study explored the use of Functional Principal Component Analysis (FPCA), a multivariate data analysis in order to assess and clarify the process of regaining independence after stroke.MethodsA randomized double-blind controlled trial was performed. Thirteen subjects with residual hemiparesis after a single stroke episode were measured in both in- and outpatient settings at a district hospital. All subjects were able to walk before suffering the stroke and were hemodynamically stable within the first week after stroke. Control and target groups were treated with conventional physiotherapy for stroke, but specific techniques were added for treatment of the target group depending on patients’ functional levels.Independence level was assessed with the Barthel Index (BI) throughout 7 evolution stages (hemodynamic stability, beginning of standing, beginning of physical therapy sessions in the physiotherapy ward and monthly assessment for 6 months after stroke).ResultsFPCA was applied for data analysis. Statistically significant differences were found in the dynamics of the recovery process between the two physiotherapy protocols. The target group showed a trend of improvement six months after stroke that was not present in the control group.ConclusionsFPCA is a method which may be used to provide greater insight into the analysis of the rehabilitation process than that provided by conventional parametric methods. So, by using the whole curves as basic data parameters, subtle differences in the rehabilitation process can be found.FPCA represents a future aid for the fine analysis of similar physiotherapy techniques, when applied in subjects with a huge variability of functional recovery, as in the case of post-stroke patients.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-0003-11-134) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.