Background: Acute cellular rejection (ACR) is a major complication in heart transplantation (HTx). Endomyocardial biopsy is the reference method for early detection of ACR, but a new non-invasive approach is needed. Tentative candidates could be circulating microRNAs. This study aimed to discover and validate microRNAs in serum for ACR detection after HTx.Methods: This prospective, observational, single-center study included 121 HTx patients. ACR was graded according to International Society of Heart and Lung Transplantation classification (0R−3R). First, in the discovery phase, microRNA expression profile was carried out in serum samples from patients at prerejection, during, and post-rejection time (0R S1 → 2R S2 → 0R S3 ). Relative expression (2 -ΔCq ) of 179 microRNAs per sample was analyzed by reverse transcription quantitative polymerase chain reaction. Second, a microRNA with a significant rise and fall pattern during ACR was selected for the next validation phase, where it was analyzed (reverse transcription quantitative polymerase chain reaction) in serum samples from 2 groups of patients: the no-ACR group (0R grade) and the ACR group (≥2R grade). Finally, a sensitivity analysis (receiver operating characteristic curve) was done to assess microRNA accuracy for ACR detection in HTx.Results: A total of 21 ACR episodes (0R S1 → 2R S2 → 0R S3 ) with their respective serum samples (n = 63) were included in the discovery phase. Among the 179 microRNAs analyzed, only miR-181a-5p met the rise and fall criteria. In the validation phase, miR-181a-5p relative expression (2 -ΔCq ) in the ACR group (n = 45) was significantly overexpressed (p < 0.0001) vs the no-ACR group (n = 45). miR-181a-5p showed an area under the curve of 0.804 (95% confidence interval: 0.707-0.880); sensitivity and specificity of 78% and 76%, respectively; and a negative predicted value of 98%.Conclusions: miR-185a-5p in serum is a candidate as a non-invasive ACR biomarker (area under the curve = 0.80 and negative predicted value = 98%). Thus, this biomarker could reduce the need for endomyocardial biopsies and the associated risks and costs of this invasive procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.