BackgroundTaxonomy is the biological discipline that identifies, describes, classifies and names extant and extinct species and other taxa. Nowadays, species taxonomy is confronted with the challenge to fully incorporate new theory, methods and data from disciplines that study the origin, limits and evolution of species.ResultsIntegrative taxonomy has been proposed as a framework to bring together these conceptual and methodological developments. Here we review perspectives for an integrative taxonomy that directly bear on what species are, how they can be discovered, and how much diversity is on Earth.ConclusionsWe conclude that taxonomy needs to be pluralistic to improve species discovery and description, and to develop novel protocols to produce the much-needed inventory of life in a reasonable time. To cope with the large number of candidate species revealed by molecular studies of eukaryotes, we propose a classification scheme for those units that will facilitate the subsequent assembly of data sets for the formal description of new species under the Linnaean system, and will ultimately integrate the activities of taxonomists and molecular biologists.
Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth’s biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.
Climatic conditions changing over time and space shape the evolution of organisms at multiple levels, including temperate lizards in the family Lacertidae. Here we reconstruct a dated phylogenetic tree of 262 lacertid species based on a supermatrix relying on novel phylogenomic datasets and fossil calibrations. Diversification of lacertids was accompanied by an increasing disparity among occupied bioclimatic niches, especially in the last 10 Ma, during a period of progressive global cooling. Temperate species also underwent a genome-wide slowdown in molecular substitution rates compared to tropical and desert-adapted lacertids. Evaporative water loss and preferred temperature are correlated with bioclimatic parameters, indicating physiological adaptations to climate. Tropical, but also some populations of cool-adapted species experience maximum temperatures close to their preferred temperatures. We hypothesize these species-specific physiological preferences may constitute a handicap to prevail under rapid global warming, and contribute to explaining local lizard extinctions in cool and humid climates.
The Linnaean classification system provides the universal reference system for communicating about the diversity of life and its hierarchic history. Several limitations that challenge the stability of this system have been identified and, as a result, alternative systems have been proposed since its early inception. The revolution caused by molecular phylogenetics has, more than ever, exemplified that Linnaean classification schemes are subject to a degree of instability that may hamper their significance and communication power. Our analysis of recent changes in the classification of several groups of organisms, with a focus on amphibians and reptiles, reveals two main sources of instability: (i) revisionary, objective (empirical) changes based on the discovery of unambiguous instances of non-monophyly and on progress in the Globe's species inventory, and (ii) subjective changes based on author preferences or on a poor analysis of the advantages and limitations of new classification schemes. To avoid subjective taxonomic instability, we review and elaborate proposals for the assignment of Linnaean rank to clades, and thereby for the naming of these clades as Linnaean taxa (Taxon Naming Criteria: TNCs). These are drafted from the perspective of practicing taxonomists and can help choosing among alternative monophyly-based classifications under a premise of economy of change. We provide a rationale for each TNC along with real and theoretical examples to illustrate their practical advantages and disadvantages. We conclude that not all TNCs lead to equally informative and stable taxonomies. Therefore, we order the various TNCs by the generality of their implications and provide a workflow scheme to guide the procedure of taxonomic decisions concerning the creation or modification of supraspecific classifications. The following criteria are considered primary when naming taxa: (i) Monophyly of the taxon in an inferred species tree; (ii) Clade Stability, i.e., the monophyly of a clade to be named as taxon should be as strongly supported as possible by various methods of tree inference, tests of clade robustness, and different data sets; and (iii) Phenotypic Diagnosability, i.e., ranked supraspecific taxa should be those that are phenotypically most conspicuous although in phenotypically cryptic groups of organisms it can be warranted to name taxa based on molecular differences alone. We consider various other criteria as secondary (i.e., the Time Banding, Biogeography, Adaptive Zone, and Hybrid Viability TNCs) and refute using them as sole arguments for the modification of established classifications or proposal of new ones. Taxonomists are encouraged to be explicit and consistent when applying TNCs for creating or modifying classifications. We emphasize that, except for monophyly, the priority TNCs are not proposed as mandatory requisites of a Linnaean taxon but as yardsticks to allow for an informed choice among various clades in a tree that could alternatively be named as Linnaean taxa. Despite a need for plurality, classifications should avoid deliberately violating any of the three primary TNCs because taxa of unstable monophyly or poor diagnosability reduce the information content and hence the utility of the Linnaean system.
Hypotheses on the taxonomic status of two Bolivian Pristimantis with taxonomic problems are assessed by an integrative taxonomic approach that integrates three independent lines of evidence: external morphology, prezygotic reproductive barriers (advertisement calls) and reciprocal monophyly (phylogenetic analyses of partial 16S mtDNA sequences). Central Andean Bolivian populations previously assigned to either P. peruvianus or P. dundeei, and lowland Amazonian populations from southern Peru and northern Bolivia previously considered P. peruvianus do not correspond to these species. Indeed, multivariate analyses of qualitative and quantitative morphological and bioacoustic characters, and phylogenetic analyses support the hypothesis that they represent different, previously unknown, cryptic lineages. They are herein described as new species. The former is a sibling species of P. fenestratus that inhabits the Amazonian and semideciduous forests of the Andean foothills in central Bolivia. The latter is sibling to the Andean species P. danae and is parapatric to it in the Amazonian lowland forests and adjacent foothills of northern Bolivia, southern Peru and adjacent Brazil. Most species of Neotropical frogs, and especially Pristimantis, have been described by using external qualitative morphological characters only. An extended integrative taxonomic approach, as exemplified herein, may lead to the discovery of many other cryptic and sibling lineages that would increase the species numbers of tropical areas. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155, 97–122.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.