<p>Inspired by the previous evidence that the DO events can be modelled as transitions driven by L&#233;vy noise, we perform a detailed numerical study of the average transition rate in a double well potential for a Langevin equation driven by L&#233;vy noise. The potential considered has the height and width of the potential barrier as free parameters, which allows to study their influence separately. The results show that there are two different behaviours depending on the noise intensity. For high noise intensity the transitions are dominated by gaussian diffusion and follow Kramer&#8217;s law. When noise intensity decreases the average transition time changes to the expected power law only dependent on the width on the potential and not on the height. Moreover, we find a scaling under which the transition time collapses for all heights and widths into a universal curve, only dependent on
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.