The coarse-grained Martini force field is widely used in biomolecular simulations. Here, we present the refined model, Martini 3 (http://cgmartini.nl), with an improved interaction balance, new bead types, and expanded ability to include specific interactions representing, e.g. hydrogen bonding and electronic polarizability. The new model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.
We present parmbsc1, a new force-field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (~140 μs) covering most of the DNA structural space. Parmbsc1 provides high quality results in diverse systems, solving problems of previous force-fields. Parmbsc1 aims to be a reference force-field for the study of DNA in the next decade. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.
Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters are of relatively low resolution. Here we solve crystal structures of the archaeal transporter GltTk in the presence and absence of aspartate and use molecular dynamics simulations and binding assays to show how strict coupling between the binding of three sodium ions and aspartate takes place.
We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3′-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change.
The traditional mesoscopic paradigm represents DNA as a series of base-pair steps whose energy response to equilibrium perturbations is elastic, with harmonic oscillations (defining local stiffness) around a single equilibrium conformation. In addition, base sequence effects are often analysed as a succession of independent XpY base-pair steps (i.e. a nearest-neighbour (NN) model with only 10 unique cases). Unfortunately, recent massive simulations carried out by the ABC consortium suggest that the real picture of DNA flexibility may be much more complex. The paradigm of DNA flexibility therefore needs to be revisited. In this article, we explore in detail one of the most obvious violations of the elastic NN model of flexibility: the bimodal distributions of some helical parameters. We perform here an in-depth statistical analysis of a very large set of MD trajectories and also of experimental structures, which lead to very solid evidence of bimodality. We then suggest ways to improve mesoscopic models to account for this deviation from the elastic regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.