A key process in organ homeostasis is the mobilization of stem cells out of their niches. We show through analysis of mouse models that telomere length, as well as the catalytic component of telomerase, Tert, are critical determinants in the mobilization of epidermal stem cells. Telomere shortening inhibited mobilization of stem cells out of their niche, impaired hair growth, and resulted in suppression of stem cell proliferative capacity in vitro. In contrast, Tert overexpression in the absence of changes in telomere length promoted stem cell mobilization, hair growth, and stem cell proliferation in vitro. The effects of telomeres and telomerase on stem cell biology anticipate their role in cancer and aging.
The tumour-suppressor pathway formed by the alternative reading frame protein of the Cdkn2a locus (Arf) and by p53 (also called Trp53) plays a central part in the detection and elimination of cellular damage, and this constitutes the basis of its potent cancer protection activity. Similar to cancer, ageing also results from the accumulation of damage and, therefore, we have reasoned that Arf/p53 could have anti-ageing activity by alleviating the load of age-associated damage. Here we show that genetically manipulated mice with increased, but otherwise normally regulated, levels of Arf and p53 present strong cancer resistance and have decreased levels of ageing-associated damage. These observations extend the protective role of Arf/p53 to ageing, revealing a previously unknown anti-ageing mechanism and providing a rationale for the co-evolution of cancer resistance and longevity.
Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.
Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine.However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age.[Keywords: Telomeres; stem cell niches; telomerase; mouse; aging] Supplemental material is available at http://www.genesdev.org.
Telomerase confers limitless proliferative potential to most human cells through its ability to elongate telomeres, the natural ends of chromosomes, which otherwise would undergo progressive attrition and eventually compromise cell viability. However, the role of telomerase in organismal aging has remained unaddressed, in part because of the cancer-promoting activity of telomerase. To circumvent this problem, we have constitutively expressed telomerase reverse transcriptase (TERT), one of the components of telomerase, in mice engineered to be cancer resistant by means of enhanced expression of the tumor suppressors p53, p16, and p19ARF. In this context, TERT overexpression improves the fitness of epithelial barriers, particularly the skin and the intestine, and produces a systemic delay in aging accompanied by extension of the median life span. These results demonstrate that constitutive expression of Tert provides antiaging activity in the context of a mammalian organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.