The lunar permanently shadowed regions (PSRs) are expected to host large quantities of water-ice, which are key for sustainable exploration of the Moon and beyond. In the near future, NASA and other entities plan to send rovers and humans to characterize water-ice within PSRs. However, there exists only limited information about the small-scale geomorphology and distribution of ice within PSRs because the orbital imagery captured to date lacks sufficient resolution and/or signal. In this paper, we develop and validate a new method of post-processing LRO NAC images of PSRs. We show that our method is able to reveal previously unseen geomorphological features such as boulders and craters down to 3 meters in size, whilst not finding evidence for surface frost or near-surface ice. Our post-processed images significantly facilitate the exploration of PSRs by reducing the uncertainty of target selection and traverse/mission planning.
Recently, learning-based approaches have achieved impressive results in the field of low-light image denoising. Some state of the art approaches employ a rich physical model to generate realistic training data. However, the performance of these approaches ultimately depends on the realism of the physical model, and many works only concentrate on everyday photography. In this work we present a denoising approach for extremely low-light images of permanently shadowed regions (PSRs) on the lunar surface, taken by the Narrow Angle Camera on board the Lunar Reconnaissance Orbiter satellite. Our approach extends existing learning-based approaches by combining a physical noise model of the camera with real noise samples and training image scene selection based on 3D ray tracing to generate realistic training data. We also condition our denoising model on the camera's environmental metadata at the time of image capture (such as the camera's temperature and age), showing that this improves performance. Our quantitative and qualitative results show that our method strongly outperforms the existing calibration routine for the camera and other baselines. Our results could significantly impact lunar science and exploration, for example by aiding the identification of surface water-ice and reducing uncertainty in rover and human traverse planning into PSRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.