Light-mediated killing of pathogens by cationic photosensitisers is a promising antimicrobial approach that avoids the development of resistance inherent to the use of antimicrobials. In this study, we demonstrate that modification of different photosensitisers with the triphenylphosphonium cation yields derivatives with excellent photoantimicrobial activity against Gram-positive bacteria (ie, Staphylococcus aureus and Enterococcus faecalis). Thus, the triphenylphosphonium functional group should be considered for the development of photoantimicrobials for the selective killing of Gram-positive bacteria in the presence of Gram-negative species.
Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in
Escherichia coli
. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.
The use of light‐activated triphenylphosphonium‐based antimicrobials to tackle the emerging problem of antimicrobial resistance has been proposed in this study. Chemical modification of phenalenone and perylene with triphenylphosphonium cations enhances their photoantimicrobial activity up to 107 times. Selective targeting of Gram‐positive bacteria is demonstrated.
Further details can be found in the article by Roger Bresolí‐Obach, Ignacio Gispert and Diego García Peña et al. (https://doi.org/10.1002/e201800054).
Cover art by M. Eugenio Vázquez, @ChemBioUSC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.