Six isonitrogenous [450 g kg−1 crude protein (CP)] and isoenergetic diets (23 kJ g−1) with six levels of defatted soybean meal inclusion (0, 132, 263, 395, 526 and 658 g kg−1) in substitution of fish meal were evaluated in gilthead sea bream of 242 g initial weight for 134 days. Fish fed diets S0, S13, S26 and S39 had a similar live weight (422, 422, 438 and 422 g, respectively) but fish fed diets S53 and S66 obtained the lowest final weight (385 and 333g, respectively), and similar results were presented in specific growth rate (SGR). Fish fed diets S53 and S66 also obtained the highest feed conversion ratio (FCR). Quadratic multiple regression equations were developed for SGR and FCR which were closely related to dietary soybean level. The optimum dietary soybean levels were 205 g kg−1 for maximum SGR and 10 g kg−1 for minimum FCR. Sensorial differences were appreciated by judges between fish fed S0 and S39 soybean level, but after a re‐feeding period of 28 days with diet S0, these differences disappeared.
Modelling growth as a function of feeding rate (FR) could be one of the most important tools for fish farms, because this knowledge allows growth to be maximized, or the feed conversion ratio (FCR) to be minimized, thereby improving profits. All growth models should include the three principal variables involved in growth: initial body weight, temperature and feeding rate. The thermal-unit growth coefficient (TGC) already includes water temperature variation and initial body weight. Studying variation in TGC for fish fed the same diet, but at several feeding rates provides interesting information for modelling. Six different trials were conducted where gilthead sea bream of several different initial weights (24, 38, 50, 110, 220 or 289 g) were fed increasing amounts, and growth and the conversion index response were measured. The TGC response was modelled as a function of FR, and both asymptotic and quadratic responses were examined. The asymptotic model, TGC 9 1000 = 2.037* (1Àe (À0.8*(FRÀ0.22) ), had an adjusted R 2 value of 96.18, whereas the quadratic model, TGC 9 1000 = À0.381 + 1,715 9 FRÀ0,382 9 FR 2 , had an adjusted R 2 value of 96.42. Simulations of the FCR and the economical profitability index (EPI) were conducted to provide tools for maximizing efficiency and profitability, and the results suggest that these tools will be useful for future investigations.
Gilthead sea bream (Sparus aurata) was raised in six individual recirculating aquaculture systems (RAS) whose biofilters’ performance was analyzed. Fish were fed with three different diets (a control diet, a fishmeal-based diet (FM), and a plant meal-based diet (VM)) and with three different feeding strategies (manual feeding to apparent satiation, automatic feeding with restricted ration, and auto-demand feeding). For every combination of diet and feeding strategy, the mean oxygen consumption, ammonia excretion, and ammonia removal rate were determined. Fish fed with the VM diet consumed the most oxygen (20.06 ± 1.80 gO2 consumed kg−1 day−1). There were significant differences in ammonia excretion depending on the protein content and protein efficiency of the diet, as well as depending on feeding strategy, which in turn affected ammonia removal rates. Fish fed by auto-demand feeders led to the highest mean ammonia removal rate (0.10 gN-TAN removed m−2 biofiltration area day−1), while not leading to peaks of high ammonia concentration in water, which preserve fish welfare and growth.
The meagre is a carnivorous species and might be a suitable candidate species for the diversification of aquaculture in the Mediterranean region. This is based on its high growth and flesh quality. Nevertheless, there is little information available about its growth rates and nutrient requirements. The objective of this study was to determine the protein and energy requirements of juvenile meagre (Argyrosomus regius). Two trials for different weights of 53 and 188 g were conducted with rations from starvation to apparent satiation with the scope of studying its nutritional needs. In the first trial, the initial mean body weight of the fish was 53 g, and they were fed at feeding rates, measured as a percentage of the body weight, of 0, 0.75, 1.5, 2.5, 3.5, and 4.5%, with two replicates per treatment. In a second trial, another group with approximately 188 g of initial body weight was fed at feeding rates of 0, 0.5, 1.5, and 2.5%, with two replicates per treatment. The optimum thermal growth coefficient was obtained with a feed intake of 2.2% day−1 in trial A and 1.73% day−1 in trial B. The digestible protein (DP) intake for maintenance was determined as 0.57 g kg−0.7 day−1, the DP intake for maximum growth was 6.0 g kg−0.7 day−1, and the point for maximum efficiency in protein retention was 1.8 g kg−0.7 day−1. The requirement for digestible energy (DE) intake for maintenance was recorded at 25.4 kJ kg−0.82 day−1, the DE intake to maximize growth was 365 kJ kg−0.82 day−1, and the point for maximum efficiency in energy retention occurs with a digestible energy intake of 93 kJ kg−0.82 day−1. The requirements and retention efficiency of protein and energy in Argyrosomus regius tend to be within the range other fish species. The maintenance needs are in agreement with species with low voluntary activity and growth requirements in agreement with fast-growth species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.