Two processes are necessary to solve group decision making problems: a consensus process and a selection process. The consensus process is necessary to obtain a final solution with a certain level of agreement between the experts, while the selection process is necessary to obtain such a final solution. Clearly, it is preferable that the set of experts reach a high degree of consensus before applying the selection process. In order to measure the degree of consensus, different approaches have been proposed. For example, we can use hard consensus measures, which vary between 0 (no consensus or partial consensus) and 1 (full consensus), or soft consensus measures, which assess the consensus degree in a more flexible way. The aim of this paper is to analyze the different consensus approaches in fuzzy group decision making problems and discuss their advantages and drawbacks. Additionally, we study the future trends.
To solve group decision making problems we have to take in account different aspects. On the one hand, depending on the problem, we can deal with different types of information. In this way, most group decision making problems based on linguistic approaches use symmetrically and uniformly distributed linguistic term sets to express experts' opinions. However, there exist problems whose assessments need to be represented by means of unbalanced linguistic term sets, i.e., using term sets which are not uniformly and symmetrically distributed. On the other hand, there may be cases in which experts do not have an in-depth knowledge of the problem to be solved. In such cases, experts may not put their opinion forward about certain aspects of the problem and, as a result, they may present incomplete information. The aim of this paper is to present a consensus model to help experts in all phases of the consensus reaching process in group decision making problems in an unbalanced fuzzy linguistic context with incomplete information. As part of this consensus model, we propose an iterative procedure using consistency measures to estimate the incomplete information.In addition, the consistency measures are used together with consensus measures to guided the consensus model.The main novelty of this consensus model is that it supports the management of incomplete unbalanced fuzzy linguistic information and it allows to achieve consistent solutions with a great level of agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.