In Chile elevated percentage of population have cardiovascular diseases, 70% of this populations is a hypertensive peoples. The Ruta graveolens (Ruta) is a medicinal plant used in different parts of the world with different therapeutics properties like dermatologic as far as anti-helmintic properties. We analyzed the vascular action measuring the tension to identify vasodilator effect of Ruta extract in normtense rat's aorta incubated and measured in isolated organ bath, and evaluating the toxicity effect in CRL-1730 cell line, through enzymatic assay (MTT), confocal microscopy (propidium iodide stain) and flow cytometry (TUNEL assay), including extracellular reactive oxygen species (ROS) production through luminescence assay. The results show with DE 50 29 ± 0.1 μg/mL evidenced vasodilatation, partially endothelium-depend. The cytotoxicity showed with DE 50 304.6 ± 2 μg/mL in enzymatic assay (MTT) while evidenced membrane permeability in high concentrations (1500 µg/mL), DNA fragmentation in absence of oxidative stress in only observed when high concentrations of Ruta are used over the cell culture. The vasodilatation activity is executed in subtoxic concentration and partially endothelium-depend without permeability effect in the membrane and deterioration of the cells viability suggesting a complex effect of Ruta preparation in the regulation of vascular tone.
Studies had indicate that excessive production of reactive oxygen species (ROS) affect cellular signaling pathways, which is associated with pathological and physiological conditions such as cancer, diabetes and neurodegenerative diseases In this context, our laboratory has obtained the Bios-p, a ROS modulator, peptide analogue by sequencing from the seed of Bauhinia bauhinoides, which represents the active 12-amino acid, obtained from the inhibitor BbKI protease and we predicted the three-dimensional structure of Bios-p analogue peptide using homology modeling, being patented by the working group of Dr. Maria Luiza Vilela Oliva of UNIFESP, Brazil (a member of our cluster). The protective effect on the viability and antioxidant capacity of Bios-p was studied in HEK 293T cells under oxidative stress induced by hydrogen peroxide (H2O2) using SYTOXGREEN/DHE and luminescence assay. The three-dimensional structure of Bios-p peptide analogue was predicted by homology-based modeling using Modeller9v8. The pretreatment with different concentrations of Bios-p (1 μM - 10 μM) showed an increase of 53.83% ± 3.86% the cellular viability in under oxidative stress compared to control. Furthermore, the results to indicate that HEK293T cells by incubating for 24 h with Bios-p shown a significant decreased of basal extracellular ROS on total cell population in 89.67% ± 0.76%, compared to control in the absence of the analogue. Similarly it is observed that Bios-p has a significant antioxidant effect on extracellular ROS production when cells are subjected to oxidative stress induced by 200 μM H2O2 in64.37% ± 4.63%, compared to control in absence of H2O2 and Bios-p. These results suggest that Bios-p has potential as antioxidant agent in cells HEK293T under H2O2-induced oxidative stress and that can protect the cells viability as concentration-dependent, and we propose a new biotechnological tool for modulate the ROS production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.