BackgroundTo unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity.Methodology/Principal Findings Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-α-induction was TLR4- and TLR2-dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice.Conclusion/SignificanceWe propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections.
SummaryTwo mutants showing increased sensitivity to polycations and surfactants were obtained by transposon mutagenesis of virulent Brucella abortus 2308 Nal r . These mutants showed no obvious in vitro growth defects and produced smooth-type lipopolysaccharides. However, they hardly multiplied or persisted in mouse spleens, displayed reduced invasiveness in macrophages and HeLa cells, lost the ability to inhibit lysosome fusion and were unable to replicate intracellularly. Subsequent DNA analyses identified a two-component regulatory system [Brucella virulence related (Bvr)] with a regulatory (BvrR) and sensory (BvrS) protein. Cloning of bvrR in the BvrR-deficient mutant restored the resistance to polycations and, in part, the invasiveness and the ability to multiply intracellularly. BvrR and BvrS were highly similar (87-89% and 70-80% respectively) to the regulatory and sensory proteins of the chromosomally encoded Rhizobium meliloti ChvI-ExoS and Agrobacterium tumefaciens ChvI-ChvG systems previously shown to be critical for endosymbiosis and pathogenicity in plants. Divergence among the three sensory proteins was located mostly within a periplasmic domain probably involved in stimulus sensing. As B. abortus, R. meliloti and A. tumefaciens are phylogenetically related, these observations suggest that these systems have a common ancestor that has evolved to sense stimuli in plant and animal microbial environments.
BackgroundThe brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines.Methodology/Principal FindingsTo examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies.Conclusions/SignificanceThe results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.
-Brucellosis control and eradication requires serological tests and vaccines. Effective classical vaccines (S19 in cattle and Rev 1 in small ruminants), however, induce antibodies to the O-polysaccharide of the lipopolysaccharide which may be difficult to distinguish from those resulting from infection and may thus complicate diagnosis. Rough attenuated mutants lack the O-polysaccharide and would solve this problem if eliciting protective immunity; the empirically obtained rough mutants 45/20 and RB51 have been used as vaccines. Strain 45/20 is reportedly unstable and it is not presently used. RB51 is increasingly used instead of S19 in some countries but it is rifampicin resistant and its effectiveness is controversial. Some controlled experiments have found good or absolute protection in adult cattle vaccinated orally (full dose) or subcutaneously (reduced dose) and in one field experiment, RB51 was reported to afford absolute protection to calves and to perform better than S19. Controlled experiments in calves, however, have shown reduced doses of RB51 to be ineffective, full doses only partially effective, and RB51 less effective than S19 against severe challenges. Moreover, other observations suggest that RB51 is ineffective when prevalence is high. RB51 is not useful in sheep and evidence in goats is preliminary and contradictory. Rough mutants obtained by molecular biology methods on the knowledge of the genetics and structure of Brucella lipopolysaccharide may offer alternatives. The B. abortus manB core (rfbK) mutant seems promising in cattle, and analyses in mice suggest that mutations affecting only the O-polysaccharide result in better vaccines than those affecting both core and O-polysaccharide. Possible uses of rough vaccines also include boosting immunity by revaccination but solid evidence on its effectiveness, safety and practicality is not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.