The absorption and cerebral distribution of manganese (Mn) have been studied with respect to the route of administration and the chemical form of the Mn compound. Different groups of adult male rats received either MnCl2, 4H2O or MnO2 once a week for 4 weeks at a dose of 24.3 mg Mn/kg body wt. (b.w.) by oral gavage (g.) or 1.22 mg Mn/kg b.w. by intraperitoneal injection (i.p.) or intratracheal instillation (i.t.). Control rats were treated with 0.9% saline. Four days after the last administration the rats were killed and the concentration of Mn measured in blood, hepatic and cerebral tissues (cortex, cerebellum, and striatum). The liver Mn concentration was not affected by the treatments whatever the chemical form or the route of administration of the Mn compound. Administration of MnCl2 by g., i.p., and i.t. routes produced equivalent steady-state blood Mn concentrations (about 1000 ng Mn/100 ml), representing increases of 68, 59, and 68% compared with controls, respectively. Mn concentrations were significantly increased in the cortex but to a lesser extent (g., 22%; i.p., 36%; i.t., 48%) and were higher in the cerebellum after i.p. and i.t. administrations than after oral gavage. Rats treated i.t. with MnCl2 showed an elective increase of the striatal Mn concentration (205%). In contrast, MnO2 given orally did not significantly increase blood and cerebral tissue Mn concentrations; the low bioavailability is most likely due to the lack of intestinal resorption. Administration of MnO2 i.p. and i.t., however, led to significant increases of Mn concentrations in blood and cerebral tissues. These increments were not significantly different from those measured after MnCl2 administration, except for striatal Mn after i.t. which was markedly less (48%) after MnO2 administration. A comparison of the blood Mn kinetics immediately after g. and i.t. treatment with MnCl2 or MnO2 indicated that the higher elevation of blood Mn concentration (> 2000 ng Mn/100 ml) after i.t. administration of MnCl2 could account for the elective uptake of Mn in the striatum observed in repeated dosing experiments. It is concluded that the modulation of Mn distribution in brain regions according to the route of administration and the chemical form of the Mn compound may be explained on the basis of different blood Mn kinetics and regional anatomic specificities of the striatal region.
Methadone is an opiate drug that has been identified as an in-vitro substrate of the efflux pump P-glycoprotein (P-gp), active in the intestinal epithelium and in the blood-brain barrier (BBB), among other sites. The objective of this study was to test in vivo, in the rat model, the role of P-gp modulation on the analgesic effect and brain uptake of methadone, as well as identify the most relevant site via dual oral and intravenous (i.v.) experiments. The P-gp specific inhibitor (valspodar or PSC833) was preadministered (10 mg kg(-1) i.v.) to test groups. Analgesia was measured using the tailflick test. The ED50 for oral methadone (2, 3, 6 and 8 mg kg(-1)) decreased three-fold in valspodar groups compared with controls (2.23 +/- 0.002 mg kg(-1) and 6.07 +/- 0.07 mg kg(-1); P < 0.0001). The overall analgesic effect (% antinociception) was elevated 3.1 times in pretreated compared with control rats (90.65% +/- 0.22 vs 29.23% +/- 14.0; P < 0.01) after 6 mg kg(-1) oral methadone and 2.8 times after i.v. (0.35 mg kg(-1)) administration (91.75% +/- 4.27 vs 32.45% +/- 9.0; P < 0.01). The brain:plasma distribution ratio was higher in pretreated animals and AUCbrain (overall brain concentration) was 6 times higher after oral methadone and 4 times higher after i.v. compared with controls, disproportionally increased relative to plasma, implying an active process at the BBB. P-gp, and hence substrate comedication, plays a critical role in the evolution of the methadone analgesic effect and in its brain uptake, independent of the administration route.
The absorption of bilastine after oral administration to healthy subjects was rapid. The absolute oral bioavailability was moderate.
Modern pharmacometrics can integrate and leverage all prior proprietary and public knowledge. Such methods can be used to scale across species or comparators, perform clinical trial simulation across alternative designs, confirm hypothesis and potentially reduce development burden, time and costs. Crucial yet typically lacking in integration is the pre-clinical stage. Prediction of PK in man, using in vitro and in vivo studies in different animal species, is increasingly well theorized but could still find wider application in drug development. The aim of the present work was to explore methods for bridging pharmacokinetic knowledge from animal species (i.v. and p.o.) and man (p.o.) into i.v. in man using the antihistamine drug bilastine as example. A model, predictive of i.v. PK in man, was developed on data from two pre-clinical species (rat and dog) and p.o. in man bilastine trials performed earlier. In the knowledge application stage, two different approaches were used to predict human plasma concentration after i.v. of bilastine: allometry (several scaling methods) and a semi-physiological method. Both approaches led to successful predictions of key i.v. PK parameters of bilastine in man. The predictive i.v. PK model was validated using later data from a clinical study of i.v. bilastine. Introduction of such knowledge in development permits proper leveraging of all emergent knowledge as well as quantification-based exploration of PK scenario, e.g. in special populations (pediatrics, renal insufficiency, comedication). In addition, the methods permit reduction or elimination and certainly optimization of learning trials, particularly those concerning alternative off-label administration routes.
The rapid achievement of efficacious exposure to sirolimus (SRL) after renal transplantation is crucial. However, there is high unpredictability in the dose to exposure relationship. Part of the variation is related to patients originating from subpopulations of fast or slow metabolizers via the CYP3A5*1/*3 genotype. The probability of achieving therapeutic SRL blood concentrations for each subpopulation under two equal-intensity increasing-frequency protocols after the start of treatment was explored with Monte Carlo simulation. The population pharmacokinetic model and inter-patient variability distributions of Djebli et al. (DRH2006) were sampled. They developed a base and final model with a genotype covariate for CL/F in patients receiving calcineurin inhibitor (CNI)-free therapy with SRL, mycophenolate mofetil and corticosteroids. Fast metabolizers (expressers) had a CL/F of 28.3 l/h whilst slow metabolizers (non-expressers) had a CL/F of 14.1 l/h. Here, in simulation, a standard 10 mg QD SRL was contrasted with a higher frequency of 5 mg BID SRL as related to the proportion of next dosed patients being within the 15-30 ng/ml trough levels on day 7 after transplantation. Near 0% of expressers on either regimen reached or exceeded the 30 ng/ml trough on day 7. Expressers showed protocol dependence for the chance of being within the 15-30 ng/ml range with the 5 mg BID protocol doubling those chances. Non-expressers appeared less protocol dependent for the probability of being above or below the 15-30 ng/ml range. The ability to determine the genotype early on may help to rationalize the initial titration of individual patients receiving CNI-free renal transplantation treatment with SRL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.