Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H 2 -and CH 4 -rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the "Shinkai Seep Field (SSF)." The SSF appears to be a serpentinitehosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life.Challenger Deep | convergent margin | hydrothermal vent | Shinkai Seep Field | vesicomyid clam H ydrothermal activity plays an important role in Earth evolution by modifying the composition of oceanic crust, affecting ocean chemistry, forming metal-rich deposits, and providing energy and nutrient sources for chemosynthetic biological communities. Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures occur in different tectonic settings. Along divergent plate margins, three basic vent types have been identified. The first type is a basalt-hosted, hightemperature hydrothermal system with fluid temperatures up to approximately 400°C and low H 2 and CH 4 concentrations, but high metal concentrations (e.g., TAG hydrothermal field, 26°10′
Brucite-carbonate chimneys were discovered from the deepest known ($5700 m depth) serpentinite-hosted ecosystem-the Shinkai Seep Field (SSF) in the southern Mariana forearc. Textural observations and geochemical analysis reveal three types (I-III) of chimneys formed by the precipitation and dissolution of constitutive minerals. Type I chimneys are bright white to light yellow, have a spiky crystalline and wrinkled surface with microbial mat and contain more brucite; these formed as a result of rapid precipitation under high fluid discharge conditions. Type II chimneys exhibit white to dull brown coloration, tuberous textures like vascular bundles, and are covered with grayish microbial mats and dense colonies of Phyllochaetopterus. This type of chimney is characterized by inner brucite-rich and outer carbonate rich zones and is thought to have precipitated from lower fluid discharge conditions than type I chimneys. Type III chimneys are ivory colored, have surface depressions and lack living microbial mats or animals. This type of chimney mainly consists of carbonate, and is in a dissolution stage. Stable carbon isotope compositions of carbonates in the two types (I and II) of active chimneys are extremely 13 C-enriched (up to 124.1&), which may reflect biological 12 C consumption under extremely low dissolved inorganic carbon concentrations in alkaline fluids. Type III chimneys have 13 C compositions indicating re-equilibration with seawater.Our findings demonstrate for the first time that carbonate chimneys can form below the carbonate compensation depth and provide new insights about linked geologic, hydrologic, and biological processes of the global deep-sea serpentinite-hosted vent systems.
Three submarine Diamante cross-chain volcanoes in the southern Mariana arc mark a magma-healed zone of along-arc (north–south) extension that allows either mafic mantle-derived basalts or felsic magmas from the middle of thickened arc crust to erupt. The largest volcano is East Diamante, with a well-developed (5×10 km) caldera that formed via violent felsic submarine eruptions beginning nearly 0.5 Ma. One or more of these eruptions also formed a giant submarine dune field extending 30 km to the NW of the volcano. Felsic igneous activity continues at least as recently as c. 20 000 years ago, with emplacement of resurgent dacite domes, some hot enough to power the only black smoker hydrothermal system known in the Mariana arc. In contrast, felsic eruptions do not occur on the two volcanoes to the west, implying that the mid-crustal felsic zone does not underlie the thinner crust of the Mariana Trough back-arc basin. Diamante cross-chain lavas define a medium K suite; mafic lava phenocryst assemblages show arc-like associations of anorthite-rich plagioclase with Fe-rich olivine. Magmatic temperatures for a basaltic andesite and three dacites are c. 1100 °C and c. 800 °C, respectively, typical for cool, wet, subduction-related felsic magmas. Felsic magmas formed under low-P crustal conditions. The Diamante cross-chain is the southernmost of at least seven and perhaps eight Mariana arc volcanoes in a c. 115 km long arc segment characterized by felsic eruptions. This is the ‘Anatahan Felsic Province’, which may have formed above a mid-crustal tonalite body that formed by fractionation or was re-melted when heated by c. 1200 °C mafic, mantle-derived magmas. Across- and along-arc variations suggest that felsic eruptions and dome emplacement occurred when midcrustal tonalite was remobilized by intrusions of mafic magma, while north–south extension facilitated the development of conduits to the surface.Supplementary material:Detailed Hyperdolphin ROV dive tracks, Cook 7 dredge locations, 40Ar/39Ar analytical data, analytical methods, major and selected trace element analyses of whole rock samples, and compositional data for minerals are available at http://www.geolsoc.org.uk/SUP18611
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.