The left motor cortex, through beta2 band activity, interacts with abductor caudae medialis muscle tonicity during delta sleep. This interaction takes part in the mechanisms that regulate the sleep postures.
SUMMARY Facial muscle contractions (FMC) are a commonly observed feature during sleep stages in human subjects. Previous studies have associated FMC to emotional expression during waking. Phasic features of rapid eye movement (REM) sleep, such as REMs have also been linked to an increase in limbic structure activity with a subsequent relation to emotional dream content. We hypothesized that FMC would be more frequent during REM sleep, and that FMC would correlate with the characteristic REMs of this sleep stage. The present study was designed to evaluate the density per minute of the phasic and sustained FMC of five facial muscles (frontalis, corrugator, orbicularis oculi, zygomatic major left and right) during all sleep stages, and to explore their relation with REMs density in six healthy participants during an 8 h sleep recording. Results showed a significant increase in FMC of all recorded muscles during REM sleep, both in frequency and duration. Additionally, as expected, during REM sleep there was a positive correlation among the facial muscles and between these and REMs. Nevertheless, although associated in number, both features (FMC and REMs) were never simultaneous. Our results suggest that limbic activation during REM sleep may be responsible for the enhancement of facial muscle activity, which may be consistent with the theoretical perspective of a higher emotional activity during REM sleep.k e y w o r d s EMG activity, facial muscles, rapid eye movements, REM sleep
There is evidence that some animal species have developed physiological and behavioral mechanisms to monitor potential predatory threats during rapid eye movement sleep (REMS). Nevertheless, it has not been reported in arboreal primates. The present study analyzed the sleeping postures, as well as the electromyographic and electroencephalographic (EEG) activities during three conditions: REMS, non-REMS (N-REMS), and wakefulness in spider monkeys. The study included six monkeys, whose EEGs were recorded at the O1-O2, C3, C4, F3, and F4 derivations to analyze relative power (RP) and interhemispheric, intrahemispheric, frontoposterior, and central-posterior coherence of frequency bands, which has been considered an index of arousal states. The bands analyzed were theta (4.0-7.0 Hz), alpha1 (8.0-10.5 Hz), alpha2 (11.0-13.5 Hz), and beta (14.0-30.0 Hz). Spider monkeys adopt a vertical posture during sleep, and in REMS a lack of muscular atonia was observed. The RP of the alpha bands at O1-O2 was higher during REMS than that during wakefulness, N-REMS1, and N-REMS2. At the C3 derivation, the RP of alpha1 was higher during REMS than that during N-REMS2. The RP of both alpha bands at the F4 derivation was higher during REMS than that during wakefulness, whereas REMS was characterized by a higher coherence between the F3 and O1-O2 derivations of the alpha2 band. These prevalences and the higher coherence of alpha bands during REMS could represent a correlate of behavioral traits and activated cortical areas related to a possible arousal state in spider monkeys while sleeping.
The study of electroencephalographic (EEG) activity during sleep in the spider monkey has provided new insights into primitive arboreal sleep physiology and behavior in anthropoids. Nevertheless, studies conducted to date have maintained the frequency ranges of the EEG bands commonly used with humans. The aim of the present work was to determine the EEG broad bands that characterize sleep and wakefulness in the spider monkey using principal component analysis (PCA). The EEG activity was recorded from the occipital, central, and frontal EEG derivations of six young‐adult male spider monkeys housed in a laboratory setting. To determine which frequencies covaried and which were orthogonally independent during sleep and wakefulness, the power EEG spectra and interhemispheric and intrahemispheric EEG correlations from 1 to 30 Hz were subjected to PCA. Findings show that the EEG bands detection differed from those reported previously in both spider monkeys and humans, and that the 1–3 and 2–13 Hz frequency ranges concur with the oscillatory activity elucidated by cellular recordings of subcortical regions. Results show that applying PCA to the EEG spectrum during sleep and wakefulness in the spider monkey led to the identification of frequencies that covaried with, and were orthogonally independent of, other frequencies in each behavioral vigilance state. The new EEG bands differ from those used previously with both spider monkeys and humans. The 1–3 and 2–13 Hz frequency ranges are in accordance with the oscillatory activity elucidated by cellular recordings of subcortical regions in other mammals.
There is evidence demonstrating that 5-mg of fast-release melatonin significantly reduces nocturnal sleep onset in patients with mild-to-moderate Alzheimer’s disease (AD). However, the physiological mechanism that could promote sleep installation by melatonin in patients with AD is still poorly understood. The present pilot study was designed to analyze the effects of melatonin on cortical activity during the sleep onset period (SOP) in eight mild-to-moderate AD patients treated with 5-mg of fast-release melatonin. Electroencephalographic recordings were obtained from C3-A1, C4-A2, F7-T3, F8-T4, F3-F4, and O1-O2. The relative power (RP), interhemispheric, intrahemispheric, and fronto-posterior correlations of six electroencephalographic bands were calculated and compared between two conditions: placebo and melatonin. Results show that at F7-T3, F3-F4, and C3-A1, melatonin induced an increase of the RP of the delta band. Likewise, in F7-T3, melatonin induced a decrease of the RP in the alpha1 band. Similarly, results show a lower interhemispheric correlation between the F7-T3 and F8-T4 derivations in the alpha1 band compared to the placebo condition. We conclude that the short sleep onset related to melatonin intake in AD patients was associated with a lower RP of the alpha1, a higher RP of the delta band (mainly in the left hemisphere) and a decreased interhemispheric EEG coupling in the alpha1 band. The possible role of the GABAergic neurotransmission as well as of the cascade of neurochemical events that melatonin triggers on sleep onset are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.