Highlights
Many COVID-19 patients require ICU stay which can result in neuromuscular damage.
We describe a series of 11 patients with the diagnosis of ICU acquired weakness.
Neurophysiology plays an essential role in the diagnosis of these patients.
Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients. Sixteen samples of tumor tissue and paired healthy controls were collected and both were subjected to mass spectrometry (MS)/MS proteomic analysis. Gene ontology and pathway analysis was performed to discover dysregulated pathways and/or proteins using different databases and bioinformatic tools. Dysregulated pathways were cross-validated in an independent external cohort. Cell signaling, immune response, and cell death-associated pathways were robustly identified. The SLIT/ROBO signaling pathway demonstrated dysregulation at the proteomic and transcriptomic level. Necroptosis and ferroptosis were cell death-associated processes aberrantly regulated, in addition to apoptosis. Immune response-associated pathways showed a dominance of innate immune responses. Tumor immune infiltrates measured by immunofluorescence demonstrated diverse lymphoid and myeloid populations. Our results suggest a role of SLIT/ROBO, necroptosis, and ferroptosis, as well as a prominent role of innate immune response in low-grade, early-stage EC. These results could guide future research in this group of tumors.
Low-grade and early-stage endometrioid endometrial carcinomas (EECs) have an overall good prognosis but biomarkers identifying patients at risk of relapse are still lacking. Recently, CTNNB1 exon 3 mutation has been identified as a potential risk factor of recurrence in these patients. We evaluate the prognostic value of CTNNB1 mutation in a single-centre cohort of 218 low-grade, early-stage EECs, and the correlation with beta-catenin and LEF1 immunohistochemistry as candidate surrogate markers. CTNNB1 exon 3 hotspot mutations were evaluated by Sanger sequencing. Immunohistochemical staining of mismatch repair proteins (MLH1, PMS2, MSH2, and MSH6), p53, beta-catenin, and LEF1 was performed in representative tissue microarrays. Tumours were also reviewed for mucinous and squamous differentiation, and MELF pattern. Nineteen (8.7%) tumours harboured a mutation in CTNNB1 exon 3. Nuclear beta-catenin and LEF1 were significantly associated with CTNNB1 mutation, showing nuclear beta-catenin a better specificity and positive predictive value for CTNNB1 mutation. Tumours with CTNNB1 exon 3 mutation were associated with reduced disease-free survival (p = 0.010), but no impact on overall survival was found (p = 0.807). The risk of relapse in tumours with CTNNB1 exon 3 mutation was independent of FIGO stage, tumour grade, mismatch repair protein expression, or the presence of lymphovascular space invasion. CTNNB1 exon 3 mutation has a negative impact on disease-free survival in low-grade, early-stage EECs. Nuclear beta-catenin shows a higher positive predictive value than LEF1 for CTNNB1 exon 3 mutation in these tumours.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.