Aloe Vera is an ancient medicinal plant especially known for its beneficial properties for human health, due to its bioactive compounds. In this study, nanofibers with antioxidant activity were successfully obtained by electrospinning technique with the addition of a natural Aloe Vera skin extract (AVE) (at 0, 5, 10 and 20 wt% loadings) in poly(ethylene oxide) (PEO) solutions. The successful incorporation of AVE into PEO was evidenced by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (ABTS) and ferric reducing power (FRAP) assays. The incorporation of AVE introduced some changes in the PEO/AVE nanofibers morphology showing bimodal diameter distributions for AVE contents in the range 10-20 wt%. Some decrease in thermal stability with AVE addition, in terms of decomposition onset temperature, was also observed and it was more evident at high loading AVE contents (10 and 20 wt%). High encapsulation efficiencies of 92%, 76% and 105% according to DPPH, FRAP and ABTS assays, respectively, were obtained at 5 wt% AVE content, retaining AVE its antioxidant capacity in the PEO/AVE electrospun nanofibers. The results suggested that the obtained nanofibers could be promising materials for their application in active food packaging to decrease oxidation of packaged food during storage.
The use of agro-industrial wastes to obtain compounds with a high added-value is increasing in the last few years in accordance with the circular economy concept. In this work, a cascade extraction approach was developed based on ultrasound-assisted extraction (UAE) for tomato, watermelon, and apple peel wastes. The protein and antioxidant compounds were obtained during the first extraction step (NaOH 3 wt.%, 98.6 W, 100% amplitude, 6.48 W/cm2, 6 min). The watermelon peels (WP) showed higher proteins and total phenolic contents (857 ± 1 mg BSA/g extract and 107.2 ± 0.2 mg GAE/100 g dm, respectively), whereas the highest antioxidant activity was obtained for apple peels (1559 ± 20 µmol TE/100 g dm, 1767 ± 5 µmol TE/100 g dm, and 902 ± 16 µmol TE/100 g dm for ABTS, FRAP and DPPH assays, respectively). The remaining residue obtained from the first extraction was subsequently extracted to obtain cutin (ethanol 40 wt.%, 58 W, 100% amplitude, 2 W/cm2, 17 min, 1/80 g/mL, pH 2.5). The morphological studies confirmed the great efficiency of UAE in damaging the vegetal cell walls. WP showed a higher non-hydrolysable cutin content (55 wt.% of the initial cutin). A different monomers’ profile was obtained for the cutin composition by GC-MS, with the cutin from tomato and apple peels being rich in polyhydroxy fatty acids whereas the cutin extracted from WP was mainly based on unsaturated fatty acids. All of the cutin samples showed an initial degradation temperature higher than 200 °C, presenting an excellent thermal stability. The strategy followed in this work has proved to be an effective valorization methodology with a high scaling-up potential for applications in the food, pharmaceutical, nutraceutical, cosmetics and biopolymer sectors.
Aloe vera skin (AVS) is a major by-product of Aloe processing plants all over the world. In this study, response surface methodology was used to optimize microwave-assisted extraction (MAE) of bioactive compounds from AVS. The influence of extraction parameters, such as ethanol concentration (%Et), extraction temperature (T), time (t) and solvent volume (V), on extraction yield (Y), total phenolic content (TPC), antioxidant activity (DPPH and FRAP methods) and aloin content, was studied. Optimum extraction conditions were determined as 80% ethanol, 80 °C, 36.6 min and 50 mL and optimized extracts showed interesting contents of polyphenols and antioxidant performance. The phenolic profile was determined by HPLC-DAD/MS and some major phenolic compounds, such as aloin A, aloin B, aloesin, aloe-emodin, aloeresin D, orientin, cinnamic acid and chlorogenic acid, were quantified while eight other compounds were tentatively identified. Moreover, structural and thermal properties were studied by FTIR and TGA analyses, respectively. The obtained results suggested the potential of AVS as a promising source of bioactive compounds, thus increasing the added value of this agricultural waste.
Tomato seed (TS) wastes are obtained in large amounts from the tomato processing industry. In this work, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) of antioxidant compounds from TS were optimized by using response surface methodology. The effect of MAE and UAE main extraction parameters was studied on total phenolic content (TPC) and antioxidant activity (DPPH) responses. Antioxidant, structural, morphological, and thermal properties of MAE and UAE extracts were evaluated. A great influence of ethanol concentration was observed in both extraction methods. Optimal MAE conditions were determined as 15 min, 80 °C, 63% ethanol and 80 mL, with a desirability value of 0.914, whereas 15 min, 61% ethanol and 85% amplitude (desirability = 0.952) were found as optimal conditions for UAE. MAE extracts exhibited higher TPC and antioxidant activity values compared to UAE (1.72 ± 0.04 and 1.61 ± 0.03 mg GAE g TS−1 for MAE and UAE, respectively). Thermogravimetric analysis (TGA) results suggested the presence of some high molecular weight compounds in UAE extracts. Chlorogenic acid, rutin and naringenin were identified and quantified by HPLC-DAD-MS as the main polyphenols found by MAE and UAE, showing MAE extracts higher individual phenolics content (1.11–2.99 mg 100 g TS−1). MAE and UAE have shown as effective green techniques for extracting bioactive molecules with high antioxidant activity from TS with high potential to be scaled-up for valorizing of TS industrial wastes.
In this work, lipids and bioactive compounds from tomato seed by-products were extracted and compared by using advanced extraction techniques, such as microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE). The influence of different extraction parameters, including extraction temperature (T), time (t) and solvent volume (V) for MAE as well as extraction temperature (T), pressure (P) and flow rate (F) for SFE-CO2, was evaluated on tomato seed oil (TSO) yield and fatty acids composition using response surface methodology (RSM). Optimum extraction conditions for MAE were 56.2 °C, 29.0 min, and 67.6 mL, whereas conditions of 60.2 °C, 400.0 bar, and 64.6 g min−1 were found for SFE-CO2. Under these conditions, higher TSO extraction yields were obtained by MAE compared to SFE-CO2 (25.3 wt% and 16.9 wt%, respectively), while similar fatty acids profiles were found by GC in terms of FAMEs composition: methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate, accounting for around 80 wt% of unsaturated fatty acids. TSO MAE extracts showed high DPPH• radical scavenging activity which was related to the presence of tocopherols; in particular γ-tocopherol, which was found as the dominant homologue (260.3 ± 0.6 mg kgTS−1) followed by a lower amount of α-tocopherol (6.53 ± 0.12 mg kgTS−1) by HPLC-DAD. The obtained results suggested that tomato seeds are an interesting source of bioactive compounds with potential use in a wide range of nutritional and food applications, increasing the added value of this by-product, which is currently underexploited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.