Diphenylgermylene (Ph2Ge) and its Ge=Ge doubly bonded dimer, tetraphenyldigermene (6a), have been characterized directly in solution for the first time by laser flash photolysis methods. The germylene is formed via (formal) cheletropic photocycloreversion of 3,4-dimethyl-1,1-diphenylgermacyclopent-3-ene (4a), which is shown to proceed in high chemical (>95%) and quantum yield (phi = 0.62) by steady-state trapping experiments with methanol, acetic acid, isoprene, and triethylsilane. Flash photolysis of 4a in dry deoxygenated hexane at 23 degrees C leads to the prompt formation of a transient assigned to Ph2Ge (lambda(max) = 500 nm; epsilon(max) = 1650 M(-1) cm(-1)), which decays with second-order kinetics (tau approximately 3 micros), with the concomitant growth of a second transient species that is assigned to digermene 6a (tau approximately 40 micros; lambda(max) = 440 nm). Analogous results are obtained from 1,1-dimesityl- and 1,1-dimethyl-3,4-dimethylgermacyclopent-3-ene (4b and 4c, respectively), which afford Mes2Ge (tau approximately 20 micros; lambda(max) = 560 nm) and Me2Ge (tau approximately 2 micros; lambda(max) = 480 nm), respectively, as well as the corresponding digermenes, tetramesityl- (6b; lambda(max) = 410 nm) and tetramethyldigermene (6c; lambda(max) = 370 nm). The results for the mesityl compound are compared to the analogous ones from laser flash photolysis of the known Mes2Ge/6b precursor, hexamesitylcyclotrigermane. The spectra of the three germylenes and two of the digermenes are in excellent agreement with calculated spectra, derived from time-dependent DFT calculations. Absolute rate constants for dimerization of Ph2Ge and Mes2Ge and for their reaction with n-butylamine and acetic acid in hexane at 23 degrees C are also reported.
Organochalcogen-nitrogen heterocycles such as the 1,2,5-chalcogenadiazoles have a distinct tendency to establish intermolecular links in the solid state through secondary bonding interactions E...N (E = S, Se, Te). The association of these molecules was examined in detail using relativistic density functional theory. Although there is an important electrostatic component, the interaction between these molecules is dominated by contributions arising from orbital mixing, which can be interpreted as the donation of a nitrogen lone pair into the chalcogen-centered antibonding orbitals. Because of its more polar character and lower-lying antibonding orbitals, the tellurium derivatives possess the strongest association energies; these are so large that the binding strength is comparable to that of some hydrogen bonds. In the absence of steric constraints, telluradiazoles associate in a coplanar fashion forming ribbon polymers. However, bulky susbstituents could be used to direct the formation of either helical chains or discrete dimers. In addition to its strength, the coplanar dimer is characterized by being rigid, yet no activation barrier is expected for the association/dissociation process. These attributes strongly indicate that tellurium-nitrogen heterocycles have great potential as building blocks in supramolecular architecture.
Organic molecules with heavy main-group elements frequently form supramolecular links to electron-rich centres. One particular case of such interactions is halogen bonding. Most studies of this phenomenon have been concerned with either dimers or infinitely extended structures (polymers and lattices) but well-defined cyclic structures remain elusive. Here we present oligomeric aggregates of heterocycles that are linked by chalcogen-centered interactions and behave as genuine macrocyclic species. The molecules of 3-methyl-5-phenyl-1,2-tellurazole 2-oxide assemble a variety of supramolecular aggregates that includes cyclic tetramers and hexamers, as well as a helical polymer. In all these aggregates, the building blocks are connected by Te…O–N bridges. Nuclear magnetic resonance spectroscopic experiments demonstrate that the two types of annular aggregates are persistent in solution. These self-assembled structures form coordination complexes with transition-metal ions, act as fullerene receptors and host small molecules in a crystal.
Bis(imino)acenaphthenes (BIAN) have been known for many years. However, it is only since the 1990s that such compounds have been recognized as robust ligands for the support of catalytically active transition metal centers. More recently, the unique stereoelectronic properties of the BIAN ligand class are beginning to be appreciated and exploited for some fascinating new developments in synthetic, structural and catalytic s- and p-block chemistry.
DFT calculations were used to compare the magnitude of steric repulsion to the strength of secondary bonding interactions (SBIs) in the (Te−N)2 supramolecular synthon to explain or predict the supramolecular structures assembled by two derivatives of the 1,2,5-telluradiazole ring: benzo-2,1,3-telluradiazole (4c) and 3,6-dibromobenzo-2,1,3-telluradiazole (5). The crystallographically determined structures were consistent with the computational predictions. In sharp contrast with the previously known structures of its sulfur and selenium analogues, 4c forms infinite ribbon chains in the solid state with 2.682(7)−2.720(7) Å Te−N SBIs. Steric hindrance in 5 restricted the supramolecular association to form discrete dimers with 2.697(8) Å Te−N SBIs. In addition to discrete dimers, the dibromo derivative crystallizes as solvated dimers in 5·DMSO with 2.834(5) Å Te−O SBIs. Other weaker SBIs were identified in the crystal lattices and were assessed by the computational method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.